文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

New Insights on the Uptake and Trafficking of Coenzyme Q.

作者信息

Guile Michael D, Jain Akash, Anderson Kyle A, Clarke Catherine F

机构信息

Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA.

出版信息

Antioxidants (Basel). 2023 Jul 6;12(7):1391. doi: 10.3390/antiox12071391.


DOI:10.3390/antiox12071391
PMID:37507930
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10376127/
Abstract

Coenzyme Q (CoQ) is an essential lipid with many cellular functions, such as electron transport for cellular respiration, antioxidant protection, redox homeostasis, and ferroptosis suppression. Deficiencies in CoQ due to aging, genetic disease, or medication can be ameliorated by high-dose supplementation. As such, an understanding of the uptake and transport of CoQ may inform methods of clinical use and identify how to better treat deficiency. Here, we review what is known about the cellular uptake and intracellular distribution of CoQ from yeast, mammalian cell culture, and rodent models, as well as its absorption at the organism level. We discuss the use of these model organisms to probe the mechanisms of uptake and distribution. The literature indicates that CoQ uptake and distribution are multifaceted processes likely to have redundancies in its transport, utilizing the endomembrane system and newly identified proteins that function as lipid transporters. Impairment of the trafficking of either endogenous or exogenous CoQ exerts profound effects on metabolism and stress response. This review also highlights significant gaps in our knowledge of how CoQ is distributed within the cell and suggests future directions of research to better understand this process.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ed2/10376127/3d55a32db70e/antioxidants-12-01391-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ed2/10376127/1f2ac13ffca9/antioxidants-12-01391-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ed2/10376127/74aa384cde60/antioxidants-12-01391-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ed2/10376127/0df43eb92d00/antioxidants-12-01391-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ed2/10376127/e46b952c1971/antioxidants-12-01391-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ed2/10376127/b15d57f3ff4f/antioxidants-12-01391-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ed2/10376127/10ceaa602025/antioxidants-12-01391-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ed2/10376127/3d55a32db70e/antioxidants-12-01391-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ed2/10376127/1f2ac13ffca9/antioxidants-12-01391-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ed2/10376127/74aa384cde60/antioxidants-12-01391-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ed2/10376127/0df43eb92d00/antioxidants-12-01391-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ed2/10376127/e46b952c1971/antioxidants-12-01391-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ed2/10376127/b15d57f3ff4f/antioxidants-12-01391-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ed2/10376127/10ceaa602025/antioxidants-12-01391-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ed2/10376127/3d55a32db70e/antioxidants-12-01391-g007.jpg

相似文献

[1]
New Insights on the Uptake and Trafficking of Coenzyme Q.

Antioxidants (Basel). 2023-7-6

[2]
Genes and lipids that impact uptake and assimilation of exogenous coenzyme Q in Saccharomyces cerevisiae.

Free Radic Biol Med. 2020-7

[3]
The multiple roles of coenzyme Q in cellular homeostasis and their relevance for the pathogenesis of coenzyme Q deficiency.

Free Radic Biol Med. 2021-4

[4]
Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants.

J Biol Chem. 2002-3-29

[5]
Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function.

J Lipid Res. 2019-5-2

[6]
Coenzyme Q deficiencies: pathways in yeast and humans.

Essays Biochem. 2018-7-20

[7]
Genetic screening reveals phospholipid metabolism as a key regulator of the biosynthesis of the redox-active lipid coenzyme Q.

Redox Biol. 2021-10

[8]
Metabolism of the Flavonol Kaempferol in Kidney Cells Liberates the B-ring to Enter Coenzyme Q Biosynthesis.

Molecules. 2020-6-27

[9]
Invertebrate models for coenzyme q10 deficiency.

Mol Syndromol. 2014-7

[10]
The regulation of coenzyme q biosynthesis in eukaryotic cells: all that yeast can tell us.

Mol Syndromol. 2014-7

引用本文的文献

[1]
From bench to bedside: targeting ferroptosis and mitochondrial damage in the treatment of diabetic cardiomyopathy.

Front Endocrinol (Lausanne). 2025-4-25

[2]
Therapeutic Approaches with Iron Oxide Nanoparticles to Induce Ferroptosis and Overcome Radioresistance in Cancers.

Pharmaceuticals (Basel). 2025-2-26

[3]
Mitochondrial-ER Contact Sites and Tethers Influence the Biosynthesis and Function of Coenzyme Q.

Contact (Thousand Oaks). 2025-2-3

[4]
Nutritional and Nutraceutical Support to the Failing Myocardium: A Possible Way of Potentiating the Current Treatment of Heart Failure.

Int J Mol Sci. 2024-11-14

[5]
Research Progress of Coenzyme Q in Diabetes Mellitus and Its Common Complications.

Diabetes Metab Syndr Obes. 2024-10-3

[6]
Nonfunctional coq10 mutants maintain the ERMES complex and reveal true phenotypes associated with the loss of the coenzyme Q chaperone protein Coq10.

J Biol Chem. 2024-11

[7]
Understanding coenzyme Q.

Physiol Rev. 2024-10-1

[8]
Novel approaches targeting ferroptosis in treatment of glioma.

Front Neurol. 2023-11-6

本文引用的文献

[1]
In situ architecture of the ER-mitochondria encounter structure.

Nature. 2023-6

[2]
Differential Contributions of Distinct Free Radical Peroxidation Mechanisms to the Induction of Ferroptosis.

JACS Au. 2023-3-4

[3]
The UbiB family member Cqd1 forms a novel membrane contact site in mitochondria.

J Cell Sci. 2023-5-15

[4]
Coenzyme Q10 Metabolism: A Review of Unresolved Issues.

Int J Mol Sci. 2023-1-30

[5]
Coenzyme Q biochemistry and biosynthesis.

Trends Biochem Sci. 2023-5

[6]
Mitochondria regulate intracellular coenzyme Q transport and ferroptotic resistance via STARD7.

Nat Cell Biol. 2023-2

[7]
Depletion and Supplementation of Coenzyme Q10 in Secondary Deficiency Disorders.

Front Biosci (Landmark Ed). 2022-12-19

[8]
Predicting and Understanding the Pathology of Single Nucleotide Variants in Human Genes.

Antioxidants (Basel). 2022-11-22

[9]
Chemistry of Lipoquinones: Properties, Synthesis, and Membrane Location of Ubiquinones, Plastoquinones, and Menaquinones.

Int J Mol Sci. 2022-10-25

[10]
Antioxidant Response in Human X-Linked Adrenoleukodystrophy Fibroblasts.

Antioxidants (Basel). 2022-10-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索