Suppr超能文献

纵向脑电图信号的张量分解分析揭示闭眼和睁眼运动想象脑机接口中的差异振荡动力学:一例报告

Tensor Decomposition Analysis of Longitudinal EEG Signals Reveals Differential Oscillatory Dynamics in Eyes-Closed and Eyes-Open Motor Imagery BCI: A Case Report.

作者信息

Seifpour Saman, Šatka Alexander

机构信息

RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.

Institute of Measurement Science, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava, Slovakia.

出版信息

Brain Sci. 2023 Jun 30;13(7):1013. doi: 10.3390/brainsci13071013.

Abstract

Functional dissociation of brain neural activity induced by opening or closing the eyes has been well established. However, how the temporal dynamics of the underlying neuronal modulations differ between these eye conditions during movement-related behaviours is less known. Using a robotic-assisted motor imagery brain-computer interface (MI BCI), we measured neural activity over the motor regions with electroencephalography (EEG) in a stroke survivor during his longitudinal rehabilitation training. We investigated lateralized oscillatory sensorimotor rhythm modulations while the patient imagined moving his hemiplegic hand with closed and open eyes to control an external robotic splint. In order to precisely identify the main profiles of neural activation affected by MI with eyes-open (MIEO) and eyes-closed (MIEC), a data-driven approach based on parallel factor analysis (PARAFAC) tensor decomposition was employed. Using the proposed framework, a set of narrow-band, subject-specific sensorimotor rhythms was identified; each of them had its own spatial and time signature. When MIEC trials were compared with MIEO trials, three key narrow-band rhythms whose peak frequencies centred at ∼8.0 Hz, ∼11.5 Hz, and ∼15.5 Hz, were identified with differently modulated oscillatory dynamics during movement preparation, initiation, and completion time frames. Furthermore, we observed that lower and higher sensorimotor oscillations represent different functional mechanisms within the MI paradigm, reinforcing the hypothesis that rhythmic activity in the human sensorimotor system is dissociated. Leveraging PARAFAC, this study achieves remarkable precision in estimating latent sensorimotor neural substrates, aiding the investigation of the specific functional mechanisms involved in the MI process.

摘要

睁眼或闭眼引起的大脑神经活动功能分离已得到充分证实。然而,在与运动相关的行为中,这些眼部状态下潜在神经元调制的时间动态如何不同却鲜为人知。我们使用机器人辅助运动想象脑机接口(MI BCI),在一名中风幸存者的纵向康复训练期间,通过脑电图(EEG)测量了运动区域的神经活动。我们研究了患者在闭眼和睁眼想象移动偏瘫手以控制外部机器人夹板时的侧化振荡感觉运动节律调制。为了精确识别受睁眼运动想象(MIEO)和闭眼运动想象(MIEC)影响的神经激活的主要特征,采用了基于平行因子分析(PARAFAC)张量分解的数据驱动方法。使用所提出的框架,识别出了一组窄带、特定于个体的感觉运动节律;它们各自都有自己的空间和时间特征。当将MIEC试验与MIEO试验进行比较时,确定了三个关键窄带节律,其峰值频率分别集中在约8.0 Hz、约11.5 Hz和约15.5 Hz,在运动准备、启动和完成时间框架内具有不同调制的振荡动态。此外,我们观察到较低和较高的感觉运动振荡在MI范式中代表不同的功能机制,强化了人类感觉运动系统中的节律活动是分离的这一假设。利用PARAFAC,本研究在估计潜在感觉运动神经基质方面达到了显著的精度,有助于研究MI过程中涉及的特定功能机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a743/10377314/a17d3d36aaf3/brainsci-13-01013-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验