Suppr超能文献

使用主成分分析(PCA)和加权线性判别分析(SWLDA)增强的神经网络模型改善脑磁共振成像(MRI)图像中的阿尔茨海默病分类

Improving Alzheimer's Disease Classification in Brain MRI Images Using a Neural Network Model Enhanced with PCA and SWLDA.

作者信息

Ahmad Irshad, Siddiqi Muhammad Hameed, Alhujaili Sultan Fahad, Alrowaili Ziyad Awadh

机构信息

Department of Computer Science, Islamia College, Peshawar 25000, KPK, Pakistan.

College of Computer and Information Sciences, Jouf University, Sakaka 2014, Aljouf, Saudi Arabia.

出版信息

Healthcare (Basel). 2023 Sep 15;11(18):2551. doi: 10.3390/healthcare11182551.

Abstract

The examination of Alzheimer's disease (AD) using adaptive machine learning algorithms has unveiled promising findings. However, achieving substantial credibility in medical contexts necessitates a combination of notable accuracy, minimal processing time, and universality across diverse populations. Therefore, we have formulated a hybrid methodology in this study to classify AD by employing a brain MRI image dataset. We incorporated an averaging filter during preprocessing in the initial stage to reduce extraneous details. Subsequently, a combined strategy was utilized, involving principal component analysis (PCA) in conjunction with stepwise linear discriminant analysis (SWLDA), followed by an artificial neural network (ANN). SWLDA employs a combination of forward and backward recursion methods to choose a restricted set of features. The forward recursion identifies the most interconnected features based on partial -test values. Conversely, the backward recursion method eliminates the least correlated features from the same feature space. After the extraction and selection of features, an optimized artificial neural network (ANN) was utilized to differentiate the various classes of AD. To demonstrate the significance of this hybrid approach, we utilized publicly available brain MRI datasets using a 10-fold cross-validation strategy. The proposed method excelled over existing state-of-the-art systems, attaining weighted average recognition rates of 99.35% and 96.66%, respectively, across all the datasets.

摘要

使用自适应机器学习算法对阿尔茨海默病(AD)进行检查已取得了有前景的发现。然而,要在医学环境中获得足够的可信度,需要显著的准确性、最短的处理时间以及在不同人群中的通用性相结合。因此,在本研究中我们制定了一种混合方法,通过使用脑磁共振成像(MRI)图像数据集对AD进行分类。在初始阶段的预处理过程中,我们加入了均值滤波器以减少无关细节。随后,采用了一种组合策略,包括主成分分析(PCA)与逐步线性判别分析(SWLDA)相结合,然后是人工神经网络(ANN)。SWLDA采用向前和向后递归方法的组合来选择一组受限的特征。向前递归基于部分测试值识别最相关的特征。相反,向后递归方法从相同的特征空间中消除相关性最小的特征。在特征提取和选择之后,使用优化的人工神经网络(ANN)来区分AD的不同类别。为了证明这种混合方法的重要性,我们使用公开可用的脑MRI数据集采用10折交叉验证策略。所提出的方法优于现有的先进系统,在所有数据集中分别获得了99.35%和96.66%的加权平均识别率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/10530944/18a7e332cc77/healthcare-11-02551-g001.jpg

相似文献

2
A Precise Medical Imaging Approach for Brain MRI Image Classification.
Comput Intell Neurosci. 2022 May 2;2022:6447769. doi: 10.1155/2022/6447769. eCollection 2022.
3
Hybrid Feature-Learning-Based PSO-PCA Feature Engineering Approach for Blood Cancer Classification.
Diagnostics (Basel). 2023 Aug 14;13(16):2672. doi: 10.3390/diagnostics13162672.
5
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
Neuroimage. 2019 Apr 1;189:276-287. doi: 10.1016/j.neuroimage.2019.01.031. Epub 2019 Jan 14.
7
Reproducible evaluation of classification methods in Alzheimer's disease: Framework and application to MRI and PET data.
Neuroimage. 2018 Dec;183:504-521. doi: 10.1016/j.neuroimage.2018.08.042. Epub 2018 Aug 18.
9
ExHiF: Alzheimer's disease detection using exemplar histogram-based features with CT and MR images.
Med Eng Phys. 2023 May;115:103971. doi: 10.1016/j.medengphy.2023.103971. Epub 2023 Mar 21.
10
Analysis of structural brain MRI and multi-parameter classification for Alzheimer's disease.
Biomed Tech (Berl). 2018 Jul 26;63(4):427-437. doi: 10.1515/bmt-2016-0239.

本文引用的文献

2
Alzheimer's disease diagnosis and classification using deep learning techniques.
PeerJ Comput Sci. 2022 Dec 20;8:e1177. doi: 10.7717/peerj-cs.1177. eCollection 2022.
3
Accurate Detection of Alzheimer's Disease Using Lightweight Deep Learning Model on MRI Data.
Diagnostics (Basel). 2023 Mar 23;13(7):1216. doi: 10.3390/diagnostics13071216.
4
Alzheimer Disease Classification through Transfer Learning Approach.
Diagnostics (Basel). 2023 Feb 20;13(4):801. doi: 10.3390/diagnostics13040801.
6
A transfer learning approach for multiclass classification of Alzheimer's disease using MRI images.
Front Neurosci. 2023 Jan 9;16:1050777. doi: 10.3389/fnins.2022.1050777. eCollection 2022.
7
Transfer learning-based modified inception model for the diagnosis of Alzheimer's disease.
Front Comput Neurosci. 2022 Nov 1;16:1000435. doi: 10.3389/fncom.2022.1000435. eCollection 2022.
8
HTLML: Hybrid AI Based Model for Detection of Alzheimer's Disease.
Diagnostics (Basel). 2022 Jul 29;12(8):1833. doi: 10.3390/diagnostics12081833.
9
Classification of Alzheimer's Disease Based on Deep Learning of Brain Structural and Metabolic Data.
Front Aging Neurosci. 2022 Jul 12;14:927217. doi: 10.3389/fnagi.2022.927217. eCollection 2022.
10
MPC-STANet: Alzheimer's Disease Recognition Method Based on Multiple Phantom Convolution and Spatial Transformation Attention Mechanism.
Front Aging Neurosci. 2022 Jun 10;14:918462. doi: 10.3389/fnagi.2022.918462. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验