Suppr超能文献

使用卷积自动编码器和卷积神经网络融合多模态和感兴趣的解剖学体积特征用于阿尔茨海默病诊断

Fusing Multimodal and Anatomical Volumes of Interest Features Using Convolutional Auto-Encoder and Convolutional Neural Networks for Alzheimer's Disease Diagnosis.

作者信息

Abdelaziz Mohammed, Wang Tianfu, Elazab Ahmed

机构信息

National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.

Department of Communications and Electronics, Delta Higher Institute for Engineering and Technology (DHIET), Mansoura, Egypt.

出版信息

Front Aging Neurosci. 2022 Apr 28;14:812870. doi: 10.3389/fnagi.2022.812870. eCollection 2022.

Abstract

Alzheimer's disease (AD) is an age-related disease that affects a large proportion of the elderly. Currently, the neuroimaging techniques [e.g., magnetic resonance imaging (MRI) and positron emission tomography (PET)] are promising modalities for AD diagnosis. Since not all brain regions are affected by AD, a common technique is to study some region-of-interests (ROIs) that are believed to be closely related to AD. Conventional methods used ROIs, identified by the handcrafted features through Automated Anatomical Labeling (AAL) atlas rather than utilizing the original images which may induce missing informative features. In addition, they learned their framework based on the discriminative patches instead of full images for AD diagnosis in multistage learning scheme. In this paper, we integrate the original image features from MRI and PET with their ROIs features in one learning process. Furthermore, we use the ROIs features for forcing the network to focus on the regions that is highly related to AD and hence, the performance of the AD diagnosis can be improved. Specifically, we first obtain the ROIs features from the AAL, then we register every ROI with its corresponding region of the original image to get a synthetic image for each modality of every subject. Then, we employ the convolutional auto-encoder network for learning the synthetic image features and the convolutional neural network (CNN) for learning the original image features. Meanwhile, we concatenate the features from both networks after each convolution layer. Finally, the highly learned features from the MRI and PET are concatenated for brain disease classification. Experiments are carried out on the ADNI datasets including ADNI-1 and ADNI-2 to evaluate our method performance. Our method demonstrates a higher performance in brain disease classification than the recent studies.

摘要

阿尔茨海默病(AD)是一种与年龄相关的疾病,影响着很大一部分老年人。目前,神经成像技术[如磁共振成像(MRI)和正电子发射断层扫描(PET)]是AD诊断的有前景的方法。由于并非所有脑区都会受到AD影响,一种常用技术是研究一些被认为与AD密切相关的感兴趣区域(ROI)。传统方法使用通过自动解剖标记(AAL)图谱的手工特征来识别ROI,而不是利用可能会导致丢失信息特征的原始图像。此外,它们在多阶段学习方案中基于判别性补丁而不是完整图像来学习其框架用于AD诊断。在本文中,我们在一个学习过程中将来自MRI和PET的原始图像特征与其ROI特征进行整合。此外,我们使用ROI特征来迫使网络专注于与AD高度相关的区域,从而可以提高AD诊断的性能。具体而言,我们首先从AAL中获取ROI特征,然后将每个ROI与其原始图像的对应区域进行配准,以获得每个受试者每种模态的合成图像。然后,我们使用卷积自动编码器网络来学习合成图像特征,并使用卷积神经网络(CNN)来学习原始图像特征。同时,我们在每个卷积层之后将来自两个网络的特征连接起来。最后,将来自MRI和PET的高度学习到的特征连接起来用于脑部疾病分类。在包括ADNI - 1和ADNI - 2的ADNI数据集中进行实验以评估我们方法的性能。我们的方法在脑部疾病分类中表现出比近期研究更高的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验