Suppr超能文献

基于深度学习的蛋白质建模预测 CD44 结构。

Prediction of CD44 Structure by Deep Learning-Based Protein Modeling.

机构信息

Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, 00168 Rome, Italy.

Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy.

出版信息

Biomolecules. 2023 Jun 28;13(7):1047. doi: 10.3390/biom13071047.

Abstract

CD44 is a cell surface glycoprotein transmembrane receptor that is involved in cell-cell and cell-matrix interactions. It crucially associates with several molecules composing the extracellular matrix, the main one of which is hyaluronic acid. It is ubiquitously expressed in various types of cells and is involved in the regulation of important signaling pathways, thus playing a key role in several physiological and pathological processes. Structural information about CD44 is, therefore, fundamental for understanding the mechanism of action of this receptor and developing effective treatments against its aberrant expression and dysregulation frequently associated with pathological conditions. To date, only the structure of the hyaluronan-binding domain (HABD) of CD44 has been experimentally determined. To elucidate the nature of CD44s, the most frequently expressed isoform, we employed the recently developed deep-learning-based tools D-I-TASSER, AlphaFold2, and RoseTTAFold for an initial structural prediction of the full-length receptor, accompanied by molecular dynamics simulations on the most promising model. All three approaches correctly predicted the HABD, with AlphaFold2 outperforming D-I-TASSER and RoseTTAFold in the structural comparison with the crystallographic HABD structure and confidence in predicting the transmembrane helix. Low confidence regions were also predicted, which largely corresponded to the disordered regions of CD44s. These regions allow the receptor to perform its unconventional activity.

摘要

CD44 是一种细胞表面糖蛋白跨膜受体,参与细胞-细胞和细胞-基质相互作用。它与构成细胞外基质的几种分子密切相关,其中主要的是透明质酸。它在各种类型的细胞中广泛表达,并参与重要信号通路的调节,因此在几种生理和病理过程中发挥关键作用。因此,CD44 的结构信息对于理解该受体的作用机制以及开发针对其异常表达和失调的有效治疗方法至关重要,而 CD44 的异常表达和失调经常与病理状况有关。迄今为止,仅 CD44 的透明质酸结合域(HABD)的结构已通过实验确定。为了阐明最常表达的同工型 CD44s 的性质,我们使用了最近开发的基于深度学习的工具 D-I-TASSER、AlphaFold2 和 RoseTTAFold 对全长受体进行初步结构预测,并对最有前途的模型进行分子动力学模拟。这三种方法都正确地预测了 HABD,其中 AlphaFold2 在与晶体 HABD 结构的结构比较和对跨膜螺旋的预测置信度方面优于 D-I-TASSER 和 RoseTTAFold。还预测了低置信度区域,这些区域在很大程度上对应于 CD44s 的无规卷曲区域。这些区域允许受体执行其非常规活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc69/10376988/ff280e754a37/biomolecules-13-01047-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验