Suppr超能文献

一种基于社交媒体的新型食源性疾病检测与网络应用工具。

A Novel Foodborne Illness Detection and Web Application Tool Based on Social Media.

作者信息

Tao Dandan, Hu Ruofan, Zhang Dongyu, Laber Jasmine, Lapsley Anne, Kwan Timothy, Rathke Liam, Rundensteiner Elke, Feng Hao

机构信息

Vanke School of Public Health, Tsinghua University, Beijing 100084, China.

Data Science Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA.

出版信息

Foods. 2023 Jul 20;12(14):2769. doi: 10.3390/foods12142769.

Abstract

Foodborne diseases and outbreaks are significant threats to public health, resulting in millions of illnesses and deaths worldwide each year. Traditional foodborne disease surveillance systems rely on data from healthcare facilities, laboratories, and government agencies to monitor and control outbreaks. Recently, there is a growing recognition of the potential value of incorporating social media data into surveillance systems. This paper explores the use of social media data as an alternative surveillance tool for foodborne diseases by collecting large-scale Twitter data, building food safety data storage models, and developing a novel frontend foodborne illness surveillance system. Descriptive and predictive analyses of the collected data were conducted in comparison with ground truth data reported by the U.S. Centers for Disease Control and Prevention (CDC). The results indicate that the most implicated food categories and the distributions from both Twitter and the CDC were similar. The system developed with Twitter data could complement traditional foodborne disease surveillance systems by providing near-real-time information on foodborne illnesses, implicated foods, symptoms, locations, and other information critical for detecting a potential foodborne outbreak.

摘要

食源性疾病及疫情对公众健康构成重大威胁,每年在全球导致数百万人患病和死亡。传统的食源性疾病监测系统依靠来自医疗机构、实验室和政府机构的数据来监测和控制疫情。最近,人们越来越认识到将社交媒体数据纳入监测系统的潜在价值。本文通过收集大规模推特数据、构建食品安全数据存储模型以及开发一种新型的前端食源性疾病监测系统,探索将社交媒体数据用作食源性疾病的替代监测工具。与美国疾病控制与预防中心(CDC)报告的地面真值数据相比,对收集到的数据进行了描述性和预测性分析。结果表明,推特和疾控中心所涉及的最主要食品类别及分布情况相似。利用推特数据开发的系统可以通过提供有关食源性疾病、涉事食品、症状、地点以及其他对于检测潜在食源性疫情至关重要的信息的近实时信息,来补充传统的食源性疾病监测系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e08/10379420/4a42b284ecf0/foods-12-02769-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验