Suppr超能文献

基于社交媒体挖掘的食源性事件检测:系统综述

Foodborne Event Detection Based on Social Media Mining: A Systematic Review.

作者信息

Salaris Silvano, Ocagli Honoria, Casamento Alessandra, Lanera Corrado, Gregori Dario

机构信息

Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, via Loredan, 18, 35121 Padova, Italy.

出版信息

Foods. 2025 Jan 14;14(2):239. doi: 10.3390/foods14020239.

Abstract

Foodborne illnesses represent a significant global health challenge, causing substantial morbidity and mortality. Conventional surveillance methods, such as laboratory-based reporting and physician notifications, often fail to enable early detection, prompting the exploration of innovative solutions. Social media platforms, combined with machine learning (ML), offer new opportunities for real-time monitoring and outbreak analysis. This systematic review evaluated the role of social networks in detecting and managing foodborne illnesses, particularly through the use of ML techniques to identify unreported events and enhance outbreak response. This review analyzed studies published up to December 2024 that utilized social media data and data mining to predict and prevent foodborne diseases. A comprehensive search was conducted across PubMed, EMBASE, CINAHL, Arxiv, Scopus, and Web of Science databases, excluding clinical trials, case reports, and reviews. Two independent reviewers screened studies using Covidence, with a third resolving conflicts. Study variables included social media platforms, ML techniques (shallow and deep learning), and model performance, with a risk of bias assessed using the PROBAST tool. The results highlighted Twitter and Yelp as primary data sources, with shallow learning models dominating the field. Many studies were identified as having high or unclear risk of bias. This review underscored the potential of social media and ML in foodborne disease surveillance and emphasizes the need for standardized methodologies and further exploration of deep learning models.

摘要

食源性疾病是一项重大的全球健康挑战,会导致大量发病和死亡。传统的监测方法,如基于实验室的报告和医生通报,往往无法实现早期检测,这促使人们探索创新解决方案。社交媒体平台与机器学习(ML)相结合,为实时监测和疫情分析提供了新机会。本系统评价评估了社交网络在检测和管理食源性疾病中的作用,特别是通过使用ML技术来识别未报告的事件并加强疫情应对。本评价分析了截至2024年12月发表的利用社交媒体数据和数据挖掘来预测和预防食源性疾病的研究。在PubMed、EMBASE、CINAHL、Arxiv、Scopus和Web of Science数据库中进行了全面检索,排除了临床试验、病例报告和综述。两名独立评审员使用Covidence筛选研究,第三名评审员解决冲突。研究变量包括社交媒体平台、ML技术(浅层和深度学习)以及模型性能,使用PROBAST工具评估偏倚风险。结果突出了Twitter和Yelp作为主要数据来源,浅层学习模型在该领域占主导地位。许多研究被确定存在高偏倚风险或偏倚风险不明确。本评价强调了社交媒体和ML在食源性疾病监测中的潜力,并强调需要标准化方法以及进一步探索深度学习模型。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验