Stasenko Nikita, Shukhratov Islomjon, Savinov Maxim, Shadrin Dmitrii, Somov Andrey
Skolkovo Institute of Science and Technology, 121205 Moscow, Russia.
Saint-Petersburg State University of Aerospace Instrumentation (SUAI), 190000 Saint-Petersburg, Russia.
Entropy (Basel). 2023 Jun 28;25(7):987. doi: 10.3390/e25070987.
Food quality control is an important task in the agricultural domain at the postharvest stage for avoiding food losses. The latest achievements in image processing with deep learning (DL) and computer vision (CV) approaches provide a number of effective tools based on the image colorization and image-to-image translation for plant quality control at the postharvest stage. In this article, we propose the approach based on Generative Adversarial Network (GAN) and Convolutional Neural Network (CNN) techniques to use synthesized and segmented VNIR imaging data for early postharvest decay and fungal zone predictions as well as the quality assessment of stored apples. The Pix2PixHD model achieved higher results in terms of VNIR images translation from RGB (SSIM = 0.972). Mask R-CNN model was selected as a CNN technique for VNIR images segmentation and achieved 58.861 for postharvest decay zones, 40.968 for fungal zones and 94.800 for both the decayed and fungal zones detection and prediction in stored apples in terms of F1-score metric. In order to verify the effectiveness of this approach, a unique paired dataset containing 1305 RGB and VNIR images of apples of four varieties was obtained. It is further utilized for a GAN model selection. Additionally, we acquired 1029 VNIR images of apples for training and testing a CNN model. We conducted validation on an embedded system equipped with a graphical processing unit. Using Pix2PixHD, 100 VNIR images from RGB images were generated at a rate of 17 frames per second (FPS). Subsequently, these images were segmented using Mask R-CNN at a rate of 0.42 FPS. The achieved results are promising for enhancing the food study and control during the postharvest stage.
食品质量控制是农业领域收获后阶段的一项重要任务,旨在避免食品损失。深度学习(DL)和计算机视觉(CV)方法在图像处理方面的最新成果提供了一些基于图像着色和图像到图像转换的有效工具,用于收获后阶段的植物质量控制。在本文中,我们提出了一种基于生成对抗网络(GAN)和卷积神经网络(CNN)技术的方法,以使用合成和分割的近红外成像数据来预测收获后早期的腐烂和真菌区域,以及对储存苹果进行质量评估。Pix2PixHD模型在将RGB图像转换为近红外图像方面取得了更高的结果(结构相似性指数SSIM = 0.972)。Mask R-CNN模型被选为用于近红外图像分割的CNN技术,在F1分数指标方面,收获后腐烂区域的分割准确率为58.861,真菌区域为40.968,储存苹果中腐烂和真菌区域的检测与预测准确率为94.800。为了验证该方法的有效性,我们获得了一个独特的配对数据集,其中包含四个品种苹果的1305张RGB和近红外图像。它进一步用于GAN模型的选择。此外,我们获取了1029张苹果近红外图像用于训练和测试CNN模型。我们在配备图形处理单元的嵌入式系统上进行了验证。使用Pix2PixHD,以每秒17帧(FPS)的速度从RGB图像生成了100张近红外图像。随后,使用Mask R-CNN以每秒0.42帧的速度对这些图像进行分割。所取得的结果对于加强收获后阶段的食品研究和控制很有前景。