CSIRO Data61, Robot Perception Team, Robotics and Autonomous Systems Group, Brisbane 4069, Australia.
CARES, Department of Electrical, Computer and Software Engineering, University of Auckland, Auckland 1010, New Zealand.
Sensors (Basel). 2022 Jun 22;22(13):4721. doi: 10.3390/s22134721.
This paper presents datasets utilised for synthetic near-infrared (NIR) image generation and bounding-box level fruit detection systems. A high-quality dataset is one of the essential building blocks that can lead to success in model generalisation and the deployment of data-driven deep neural networks. In particular, synthetic data generation tasks often require more training samples than other supervised approaches. Therefore, in this paper, we share the NIR+RGB datasets that are re-processed from two public datasets (i.e., nirscene and SEN12MS), expanded our previous study, deepFruits, and our novel NIR+RGB sweet pepper (capsicum) dataset. We oversampled from the original nirscene dataset at 10, 100, 200, and 400 ratios that yielded a total of 127 k pairs of images. From the SEN12MS satellite multispectral dataset, we selected Summer (45 k) and All seasons (180k) subsets and applied a simple yet important conversion: digital number (DN) to pixel value conversion followed by image standardisation. Our sweet pepper dataset consists of 1615 pairs of NIR+RGB images that were collected from commercial farms. We quantitatively and qualitatively demonstrate that these NIR+RGB datasets are sufficient to be used for synthetic NIR image generation. We achieved Frechet inception distances (FIDs) of 11.36, 26.53, and 40.15 for nirscene1, SEN12MS, and sweet pepper datasets, respectively. In addition, we release manual annotations of fruit bounding boxes that can be exported in various formats using cloud service. Four newly added fruits (blueberry, cherry, kiwi and wheat) compound 11 novel bounding box datasets on top of our previous work presented in the deepFruits project (apple, avocado, capsicum, mango, orange, rockmelon and strawberry). The total number of bounding box instances of the dataset is 162 k and it is ready to use from a cloud service. For the evaluation of the dataset, Yolov5 single stage detector is exploited and reported impressive mean-average-precision, mAP[0.5:0.95] results of min:0.49, max:0.812. We hope these datasets are useful and serve as a baseline for future studies.
本文提供了用于合成近红外 (NIR) 图像生成和边界框级水果检测系统的数据集。高质量数据集是模型泛化和数据驱动深度神经网络部署成功的关键组成部分之一。特别是,合成数据生成任务通常比其他监督方法需要更多的训练样本。因此,在本文中,我们共享了从两个公共数据集(即 nirscene 和 SEN12MS)重新处理的 NIR+RGB 数据集,扩展了我们之前的研究 deepFruits 以及我们新的 NIR+RGB 甜椒 (辣椒) 数据集。我们对原始 nirscene 数据集进行了 10、100、200 和 400 倍的过采样,总共生成了 127k 对图像。从 SEN12MS 卫星多光谱数据集,我们选择了夏季(45k)和所有季节(180k)子集,并应用了一种简单但重要的转换:数字编号 (DN) 到像素值转换,然后进行图像标准化。我们的甜椒数据集由 1615 对 NIR+RGB 图像组成,这些图像是从商业农场收集的。我们定量和定性地证明,这些 NIR+RGB 数据集足以用于合成 NIR 图像生成。我们分别为 nirscene1、SEN12MS 和甜椒数据集实现了 11.36、26.53 和 40.15 的 Frechet inception 距离 (FID)。此外,我们发布了水果边界框的手动注释,可以使用云服务以各种格式导出。在 deepFruits 项目中提出的之前工作的基础上,新添加的四种水果(蓝莓、樱桃、猕猴桃和小麦)组成了 11 个新的边界框数据集(苹果、鳄梨、辣椒、芒果、橙子、哈密瓜和草莓)。该数据集的边界框实例总数为 162k,可以从云服务中直接使用。为了评估数据集,我们利用了 Yolov5 单级探测器,并报告了令人印象深刻的平均精度 (mAP[0.5:0.95]),最小值为 0.49,最大值为 0.812。我们希望这些数据集对未来的研究有所帮助,并成为基准。