Suppr超能文献

基于生成对抗网络的数据增强以改进宫颈细胞分类模型。

Generative adversarial network based data augmentation to improve cervical cell classification model.

作者信息

Yu Suxiang, Zhang Shuai, Wang Bin, Dun Hua, Xu Long, Huang Xin, Shi Ermin, Feng Xinxing

机构信息

Department of Pathology, The Fourth Central Hospital of Baoding City, Baoding 072350, China.

Department of Computer Science, The University of Manchester, Manchester M13 9PL, UK.

出版信息

Math Biosci Eng. 2021 Feb 8;18(2):1740-1752. doi: 10.3934/mbe.2021090.

Abstract

The survival rate of cervical cancer can be improved by the early screening. However, the screening is a heavy task for pathologists. Thus, automatic cervical cell classification model is proposed to assist pathologists in screening. In cervical cell classification, the number of abnormal cells is small, meanwhile, the ratio between the number of abnormal cells and the number of normal cells is small too. In order to deal with the small sample and class imbalance problem, a generative adversarial network (GAN) trained by images of abnormal cells is proposed to obtain the generated images of abnormal cells. Using both generated images and real images, a convolutional neural network (CNN) is trained. We design four experiments, including 1) training the CNN by under-sampled images of normal cells and the real images of abnormal cells, 2) pre-training the CNN by other dataset and fine-tuning it by real images of cells, 3) training the CNN by generated images of abnormal cells and the real images, 4) pre-training the CNN by generated images of abnormal cells and fine-tuning it by real images of cells. Comparing these experimental results, we find that 1) GAN generated images of abnormal cells can effectively solve the problem of small sample and class imbalance in cervical cell classification; 2) CNN model pre-trained by generated images and fine-tuned by real images achieves the best performance whose AUC value is 0.984.

摘要

早期筛查可提高宫颈癌的生存率。然而,筛查对病理学家来说是一项繁重的任务。因此,提出了自动宫颈细胞分类模型来协助病理学家进行筛查。在宫颈细胞分类中,异常细胞数量较少,同时异常细胞与正常细胞数量的比例也较小。为了解决小样本和类别不平衡问题,提出了一种由异常细胞图像训练的生成对抗网络(GAN),以获取生成的异常细胞图像。使用生成图像和真实图像训练卷积神经网络(CNN)。我们设计了四个实验,包括:1)用正常细胞的欠采样图像和异常细胞的真实图像训练CNN;2)先用其他数据集对CNN进行预训练,再用细胞真实图像对其进行微调;3)用异常细胞的生成图像和真实图像训练CNN;4)先用异常细胞的生成图像对CNN进行预训练,再用细胞真实图像对其进行微调。比较这些实验结果,我们发现:1)GAN生成的异常细胞图像能有效解决宫颈细胞分类中的小样本和类别不平衡问题;2)先用生成图像预训练、再用真实图像微调的CNN模型性能最佳,其AUC值为0.984。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验