Suppr超能文献

FedDroidMeter:一种用于基于联邦学习的安卓恶意软件分类系统的隐私风险评估工具。

FedDroidMeter: A Privacy Risk Evaluator for FL-Based Android Malware Classification Systems.

作者信息

Jiang Changnan, Xia Chunhe, Liu Zhuodong, Wang Tianbo

机构信息

Key Laboratory of Beijing Network Technology, Beihang University, Beijing 100191, China.

Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin 541004, China.

出版信息

Entropy (Basel). 2023 Jul 12;25(7):1053. doi: 10.3390/e25071053.

Abstract

In traditional centralized Android malware classifiers based on machine learning, the training sample uploaded by users contains sensitive personal information, such as app usage and device security status, which will undermine personal privacy if used directly by the server. Federated-learning-based Android malware classifiers have attracted much attention due to their privacy-preserving and multi-party joint modeling. However, research shows that indirect privacy inferences from curious central servers threaten this framework. We propose a privacy risk evaluation framework, FedDroidMeter, based on normalized mutual information in response to user privacy requirements to measure the privacy risk in FL-based malware classifiers. It captures the essential cause of the disclosure of sensitive information in classifiers, independent of the attack model and capability. We performed numerical assessments using the Androzoo dataset, the baseline FL-based classifiers, the privacy-inferred attack model, and the baseline methodology of privacy evaluation. The experimental results show that FedDroidMeter can measure the privacy risks of the classifiers more effectively. Meanwhile, by comparing different models, FL, and privacy parameter settings, we proved that FedDroidMeter could compare the privacy risk between different use cases equally. Finally, we preliminarily study the law of privacy risk in classifiers. The experimental results emphasize the importance of providing a systematic privacy risk evaluation framework for FL-based malware classifiers and provide experience and a theoretical basis for studying targeted defense methods.

摘要

在传统的基于机器学习的集中式安卓恶意软件分类器中,用户上传的训练样本包含敏感的个人信息,如应用使用情况和设备安全状态,如果服务器直接使用这些信息,将会损害个人隐私。基于联邦学习的安卓恶意软件分类器因其隐私保护和多方联合建模而备受关注。然而,研究表明,来自好奇的中央服务器的间接隐私推断威胁着这个框架。为了响应用户的隐私需求,我们基于归一化互信息提出了一个隐私风险评估框架FedDroidMeter,以衡量基于联邦学习的恶意软件分类器中的隐私风险。它抓住了分类器中敏感信息泄露的根本原因,与攻击模型和能力无关。我们使用Androzoo数据集、基于联邦学习的基线分类器、隐私推断攻击模型和隐私评估的基线方法进行了数值评估。实验结果表明,FedDroidMeter能够更有效地衡量分类器的隐私风险。同时,通过比较不同的模型、联邦学习和隐私参数设置,我们证明了FedDroidMeter能够平等地比较不同用例之间的隐私风险。最后,我们初步研究了分类器中隐私风险的规律。实验结果强调了为基于联邦学习的恶意软件分类器提供系统的隐私风险评估框架的重要性,并为研究有针对性的防御方法提供了经验和理论基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验