Suppr超能文献

二维玻姆系统中的不稳定点、遍历性与玻恩定则

Unstable Points, Ergodicity and Born's Rule in 2d Bohmian Systems.

作者信息

Tzemos Athanasios C, Contopoulos George

机构信息

Research Center for Astronomy and Applied Mathematics of the Academy of Athens, Soranou Efessiou 4, GR-11527 Athens, Greece.

出版信息

Entropy (Basel). 2023 Jul 20;25(7):1089. doi: 10.3390/e25071089.

Abstract

We study the role of unstable points in the Bohmian flow of a 2d system composed of two non-interacting harmonic oscillators. In particular, we study the unstable points in the inertial frame of reference as well as in the frame of reference of the moving nodal points, in cases with 1, 2 and multiple nodal points. Then, we find the contributions of the ordered and chaotic trajectories in the Born distribution, and when the latter is accessible by an initial particle distribution which does not satisfy Born's rule.

摘要

我们研究了由两个非相互作用的谐振子组成的二维系统在玻姆流中不稳定点的作用。特别地,我们研究了在惯性参考系以及移动节点参考系中的不稳定点,包括具有1个、2个和多个节点的情况。然后,我们在玻恩分布中找到了有序和混沌轨迹的贡献,以及当初始粒子分布不满足玻恩规则时后者是否可及的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d50/10379029/b22b94ecfc26/entropy-25-01089-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验