Suppr超能文献

利用深度学习、对比度受限自适应直方图均衡化(CLAHE)和增强超分辨率生成对抗网络(ESRGAN)改善糖尿病视网膜病变的预后评估

Enhancement of Diabetic Retinopathy Prognostication Using Deep Learning, CLAHE, and ESRGAN.

作者信息

Alwakid Ghadah, Gouda Walaa, Humayun Mamoona

机构信息

Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakakah 72341, Al Jouf, Saudi Arabia.

Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt.

出版信息

Diagnostics (Basel). 2023 Jul 14;13(14):2375. doi: 10.3390/diagnostics13142375.

Abstract

One of the primary causes of blindness in the diabetic population is diabetic retinopathy (DR). Many people could have their sight saved if only DR were detected and treated in time. Numerous Deep Learning (DL)-based methods have been presented to improve human analysis. Using a DL model with three scenarios, this research classified DR and its severity stages from fundus images using the "APTOS 2019 Blindness Detection" dataset. Following the adoption of the DL model, augmentation methods were implemented to generate a balanced dataset with consistent input parameters across all test scenarios. As a last step in the categorization process, the DenseNet-121 model was employed. Several methods, including Enhanced Super-resolution Generative Adversarial Networks (ESRGAN), Histogram Equalization (HIST), and Contrast Limited Adaptive HIST (CLAHE), have been used to enhance image quality in a variety of contexts. The suggested model detected the DR across all five APTOS 2019 grading process phases with the highest test accuracy of 98.36%, top-2 accuracy of 100%, and top-3 accuracy of 100%. Further evaluation criteria (precision, recall, and F1-score) for gauging the efficacy of the proposed model were established with the help of APTOS 2019. Furthermore, comparing CLAHE + ESRGAN against both state-of-the-art technology and other recommended methods, it was found that its use was more effective in DR classification.

摘要

糖尿病性视网膜病变(DR)是糖尿病患者失明的主要原因之一。如果能及时发现并治疗DR,许多人的视力就能得以挽救。为了改进人工分析,人们已经提出了许多基于深度学习(DL)的方法。本研究使用“APTOS 2019失明检测”数据集,采用具有三种场景的DL模型从眼底图像中对DR及其严重程度阶段进行分类。在采用DL模型之后,实施了增强方法,以生成一个在所有测试场景中具有一致输入参数的平衡数据集。在分类过程的最后一步,使用了DenseNet-121模型。包括增强超分辨率生成对抗网络(ESRGAN)、直方图均衡化(HIST)和对比度受限自适应HIST(CLAHE)在内的几种方法已被用于在各种情况下提高图像质量。所建议的模型在APTOS 2019分级过程的所有五个阶段中检测DR,测试准确率最高达到98.36%,前2准确率为100%,前3准确率为100%。借助APTOS 2019建立了用于评估所建议模型有效性的进一步评估标准(精确率、召回率和F1分数)。此外,将CLAHE + ESRGAN与最先进技术和其他推荐方法进行比较,发现其在DR分类中使用起来更有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/203b/10378524/ce2cdfe754f1/diagnostics-13-02375-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验