Suppr超能文献

基于深度学习的糖尿病视网膜病变眼底图像分类及病变定位系统

Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning.

机构信息

Information Technology Department, University of King Abdul Aziz, Jeddah 21589, Saudi Arabia.

Computer Science Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha 13518, Egypt.

出版信息

Sensors (Basel). 2021 May 26;21(11):3704. doi: 10.3390/s21113704.

Abstract

Diabetic retinopathy (DR) is a disease resulting from diabetes complications, causing non-reversible damage to retina blood vessels. DR is a leading cause of blindness if not detected early. The currently available DR treatments are limited to stopping or delaying the deterioration of sight, highlighting the importance of regular scanning using high-efficiency computer-based systems to diagnose cases early. The current work presented fully automatic diagnosis systems that exceed manual techniques to avoid misdiagnosis, reducing time, effort and cost. The proposed system classifies DR images into five stages-no-DR, mild, moderate, severe and proliferative DR-as well as localizing the affected lesions on retain surface. The system comprises two deep learning-based models. The first model (CNN512) used the whole image as an input to the CNN model to classify it into one of the five DR stages. It achieved an accuracy of 88.6% and 84.1% on the DDR and the APTOS Kaggle 2019 public datasets, respectively, compared to the state-of-the-art results. Simultaneously, the second model used an adopted YOLOv3 model to detect and localize the DR lesions, achieving a 0.216 mAP in lesion localization on the DDR dataset, which improves the current state-of-the-art results. Finally, both of the proposed structures, CNN512 and YOLOv3, were fused to classify DR images and localize DR lesions, obtaining an accuracy of 89% with 89% sensitivity, 97.3 specificity and that exceeds the current state-of-the-art results.

摘要

糖尿病性视网膜病变(DR)是一种由糖尿病并发症引起的疾病,会对视网膜血管造成不可逆转的损伤。如果不早期发现,DR 会导致失明,是主要原因。目前可用的 DR 治疗方法仅限于阻止或延缓视力恶化,这突显了使用高效基于计算机的系统定期扫描以早期诊断病例的重要性。目前的工作提出了全自动诊断系统,这些系统优于手动技术,可以避免误诊,减少时间、精力和成本。所提出的系统将 DR 图像分类为五个阶段-无 DR、轻度、中度、重度和增生性 DR-以及在视网膜表面定位受影响的病变。该系统包括两个基于深度学习的模型。第一个模型(CNN512)使用整个图像作为输入到 CNN 模型中,将其分类为五个 DR 阶段之一。与最先进的结果相比,它在 DDR 和 APTOS Kaggle 2019 公共数据集上分别达到了 88.6%和 84.1%的准确率。同时,第二个模型使用经过改进的 YOLOv3 模型来检测和定位 DR 病变,在 DDR 数据集上实现了 0.216 mAP 的病变定位精度,这提高了当前最先进的结果。最后,将所提出的 CNN512 和 YOLOv3 两种结构融合起来对 DR 图像进行分类并定位 DR 病变,在 DDR 数据集上获得了 89%的准确率,具有 89%的灵敏度、97.3%的特异性,超过了当前最先进的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05b4/8198489/996ea45d3110/sensors-21-03704-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验