Suppr超能文献

一种使用深度学习技术的轻量级糖尿病视网膜病变检测模型。

A Lightweight Diabetic Retinopathy Detection Model Using a Deep-Learning Technique.

作者信息

Wahab Sait Abdul Rahaman

机构信息

Department of Documents and Archive, Center of Documents and Administrative Communication, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia.

出版信息

Diagnostics (Basel). 2023 Oct 3;13(19):3120. doi: 10.3390/diagnostics13193120.

Abstract

Diabetic retinopathy (DR) is a severe complication of diabetes. It affects a large portion of the population of the Kingdom of Saudi Arabia. Existing systems assist clinicians in treating DR patients. However, these systems entail significantly high computational costs. In addition, dataset imbalances may lead existing DR detection systems to produce false positive outcomes. Therefore, the author intended to develop a lightweight deep-learning (DL)-based DR-severity grading system that could be used with limited computational resources. The proposed model followed an image pre-processing approach to overcome the noise and artifacts found in fundus images. A feature extraction process using the You Only Look Once (Yolo) V7 technique was suggested. It was used to provide feature sets. The author employed a tailored quantum marine predator algorithm (QMPA) for selecting appropriate features. A hyperparameter-optimized MobileNet V3 model was utilized for predicting severity levels using images. The author generalized the proposed model using the APTOS and EyePacs datasets. The APTOS dataset contained 5590 fundus images, whereas the EyePacs dataset included 35,100 images. The outcome of the comparative analysis revealed that the proposed model achieved an accuracy of 98.0 and 98.4 and an F1 Score of 93.7 and 93.1 in the APTOS and EyePacs datasets, respectively. In terms of computational complexity, the proposed DR model required fewer parameters, fewer floating-point operations (FLOPs), a lower learning rate, and less training time to learn the key patterns of the fundus images. The lightweight nature of the proposed model can allow healthcare centers to serve patients in remote locations. The proposed model can be implemented as a mobile application to support clinicians in treating DR patients. In the future, the author will focus on improving the proposed model's efficiency to detect DR from low-quality fundus images.

摘要

糖尿病视网膜病变(DR)是糖尿病的一种严重并发症。它影响了沙特阿拉伯王国很大一部分人口。现有系统可协助临床医生治疗DR患者。然而,这些系统需要极高的计算成本。此外,数据集不平衡可能导致现有的DR检测系统产生假阳性结果。因此,作者旨在开发一种基于轻量级深度学习(DL)的DR严重程度分级系统,该系统可在有限的计算资源下使用。所提出的模型采用图像预处理方法来克服眼底图像中发现的噪声和伪影。建议使用“你只看一次”(Yolo)V7技术进行特征提取过程,以提供特征集。作者采用定制的量子海洋捕食者算法(QMPA)来选择合适的特征。使用超参数优化的MobileNet V3模型通过图像预测严重程度级别。作者使用APTOS和EyePacs数据集对所提出的模型进行了泛化。APTOS数据集包含5590张眼底图像,而EyePacs数据集包含35100张图像。对比分析结果表明,所提出的模型在APTOS和EyePacs数据集中的准确率分别达到了98.0和98.4,F1分数分别为93.7和93.1。在计算复杂度方面,所提出的DR模型需要更少的参数、更少的浮点运算(FLOP)、更低的学习率以及更少的训练时间来学习眼底图像的关键模式。所提出模型的轻量级特性可以使医疗中心为偏远地区的患者提供服务。所提出的模型可以作为移动应用程序来支持临床医生治疗DR患者。未来,作者将专注于提高所提出模型从低质量眼底图像中检测DR的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d402/10572365/0f15c3cdbd9a/diagnostics-13-03120-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验