Suppr超能文献

单细胞分析时代:癌症中的技术与应用。

Single-Cell Analysis in the Era: Technologies and Applications in Cancer.

机构信息

Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.

Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy.

出版信息

Genes (Basel). 2023 Jun 24;14(7):1330. doi: 10.3390/genes14071330.

Abstract

Cancer molecular profiling obtained with conventional bulk sequencing describes average alterations obtained from the entire cellular population analyzed. In the era of precision medicine, this approach is unable to track tumor heterogeneity and cannot be exploited to unravel the biological processes behind clonal evolution. In the last few years, functional single-cell has improved our understanding of cancer heterogeneity. This approach requires isolation and identification of single cells starting from an entire population. A cell suspension obtained by tumor tissue dissociation or hematological material can be manipulated using different techniques to separate individual cells, employed for single-cell downstream analysis. Single-cell data can then be used to analyze cell-cell diversity, thus mapping evolving cancer biological processes. Despite its unquestionable advantages, single-cell analysis produces massive amounts of data with several potential biases, stemming from cell manipulation and pre-amplification steps. To overcome these limitations, several bioinformatic approaches have been developed and explored. In this work, we provide an overview of this entire process while discussing the most recent advances in the field of functional at single-cell resolution.

摘要

传统的 bulk 测序获得的癌症分子谱描述了从分析的整个细胞群体中获得的平均变化。在精准医学时代,这种方法无法跟踪肿瘤异质性,也无法用于揭示克隆进化背后的生物学过程。在过去的几年中,功能单细胞分析提高了我们对癌症异质性的理解。这种方法需要从整个群体中分离和鉴定单个细胞。通过肿瘤组织解离或血液材料获得的细胞悬浮液可以使用不同的技术进行操作,以分离单个细胞,用于单细胞下游分析。单细胞数据可用于分析细胞间的多样性,从而映射不断发展的癌症生物学过程。尽管具有无可置疑的优势,但单细胞分析会产生大量数据,并且存在一些潜在的偏差,这些偏差源于细胞操作和预扩增步骤。为了克服这些限制,已经开发和探索了几种生物信息学方法。在这项工作中,我们在讨论单细胞分辨率下功能单细胞分析领域的最新进展的同时,对整个过程进行了概述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/356f/10380065/49acc807025e/genes-14-01330-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验