Department of Computer Science, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.
Int J Mol Sci. 2023 Jul 22;24(14):11785. doi: 10.3390/ijms241411785.
Understanding the binding behavior and conformational dynamics of intrinsically disordered proteins (IDPs) is crucial for unraveling their regulatory roles in biological processes. However, their lack of stable 3D structures poses challenges for analysis. To address this, we propose an algorithm that explores IDP binding behavior with protein complexes by extracting topological and geometric features from the protein surface model. Our algorithm identifies a geometrically favorable binding pose for the IDP and plans a feasible trajectory to evaluate its transition to the docking position. We focus on IDPs from Homo sapiens and Mus-musculus, investigating their interaction with the Plasmodium falciparum (PF) pathogen associated with malaria-related deaths. We compare our algorithm with HawkDock and HDOCK docking tools for quantitative (computation time) and qualitative (binding affinity) measures. Our results indicated that our method outperformed the compared methods in computation performance and binding affinity in experimental conformations.
理解无规卷曲蛋白质(IDPs)的结合行为和构象动力学对于揭示它们在生物过程中的调节作用至关重要。然而,它们缺乏稳定的 3D 结构给分析带来了挑战。为了解决这个问题,我们提出了一种算法,通过从蛋白质表面模型中提取拓扑和几何特征来探索 IDP 与蛋白质复合物的结合行为。我们的算法确定了 IDP 的几何有利结合构象,并规划了一条可行的轨迹来评估其向对接位置的转变。我们专注于来自智人和小家鼠的 IDPs,研究它们与导致疟疾相关死亡的疟原虫(PF)病原体的相互作用。我们将我们的算法与 HawkDock 和 HDOCK 对接工具进行了比较,以进行定量(计算时间)和定性(结合亲和力)测量。我们的结果表明,我们的方法在计算性能和实验构象中的结合亲和力方面优于比较方法。