Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco-EHU, Apartado 644, 48080 Bilbao, Spain.
Departamento Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
Int J Mol Sci. 2023 Jul 23;24(14):11837. doi: 10.3390/ijms241411837.
Heavy-atom-free photosensitizers are envisioned as the next generation of photoactive molecules for photo-theragnosis. In this approach, and after suitable irradiation, a single molecular scaffold is able to visualize and kill tumour cells by fluorescence signalling and photodynamic therapy (PDT), respectively, with minimal side effects. In this regard, BODIPY-based orthogonal dimers have irrupted as suitable candidates for this aim. Herein, we analyse the photophysical properties of a set of formyl-functionalized BODIPY dimers to ascertain their suitability as fluorescent photosensitizers. The conducted computationally aided spectroscopic study determined that the fluorescence/singlet oxygen generation dual performance of these valuable BODIPY dimers not only depends on the BODIPY-BODIPY linkage and the steric hindrance around it, but also can be modulated by proper formyl functionalization at specific chromophoric positions. Thus, we propose regioselective formylation as an effective tool to modulate such a delicate photonic balance in BODIPY-based dimeric photosensitizers. The taming of the excited-state dynamics, in particular intramolecular charge transfer as the key underlying process mediating fluorescence deactivation vs. intersystem crossing increasing, could serve to increase fluorescence for brighter bioimaging, enhance the generation of singlet oxygen for killing activity, or balance both for photo-theragnosis.
无重原子敏化剂被视为用于光治疗的下一代光活性分子。在这种方法中,经过适当的辐照后,单个分子支架能够分别通过荧光信号和光动力疗法(PDT)来可视化和杀死肿瘤细胞,副作用最小。在这方面,基于 BODIPY 的正交二聚体已经成为实现这一目标的合适候选物。在此,我们分析了一组甲酰基功能化 BODIPY 二聚体的光物理性质,以确定它们作为荧光光敏剂的适用性。进行的计算辅助光谱研究确定,这些有价值的 BODIPY 二聚体的荧光/单线态氧生成双重性能不仅取决于 BODIPY-BODIPY 键合及其周围的空间位阻,而且还可以通过在特定发色团位置进行适当的甲酰基官能化来调节。因此,我们提出区域选择性甲酰化作为调节基于 BODIPY 的二聚体光敏剂中这种微妙光子平衡的有效工具。激发态动力学的控制,特别是作为介导荧光猝灭与系间窜越增加的关键底层过程的分子内电荷转移,可以用于增加荧光以实现更亮的生物成像,增强用于杀伤活性的单线态氧的产生,或平衡光治疗的两者。