Zhou Zaigang, Chen Jiashe, Liu Yu, Zheng Chunjuan, Luo Wenjuan, Chen Lele, Zhou Shen, Li Zhiming, Shen Jianliang
State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China.
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
Acta Pharm Sin B. 2022 Nov;12(11):4204-4223. doi: 10.1016/j.apsb.2022.07.023. Epub 2022 Aug 8.
As a promising modality for cancer therapy, photodynamic therapy (PDT) still acquired limited success in clinical nowadays due to the extremely serious hypoxia and immunosuppression tumor microenvironment. To ameliorate such a situation, we rationally designed and prepared cascade two-stage re-oxygenation and immune re-sensitization BSA-MHI148@SRF nanoparticles hydrophilic and hydrophobic self-assembly strategy by using near-infrared photodynamic dye MHI148 chemically modified bovine serum albumin (BSA-MHI148) and multi-kinase inhibitor Sorafenib (SRF) as a novel tumor oxygen and immune microenvironment regulation drug. Benefiting from the accumulation of SRF in tumors, BSA-MHI148@SRF nanoparticles dramatically enhanced the PDT efficacy by promoting cascade two-stage tumor re-oxygenation mechanisms: (i) SRF decreased tumor oxygen consumption inhibiting mitochondria respiratory. (ii) SRF increased the oxygen supply inducing tumor vessel normalization. Meanwhile, the immunosuppression micro-environment was also obviously reversed by two-stage immune re-sensitization as follows: (i) Enhanced immunogenic cell death (ICD) production amplified by BSA-MHI148@SRF induced reactive oxygen species (ROS) generation enhanced T cell infiltration and improve its tumor cell killing ability. (ii) BSA-MHI148@SRF amplified tumor vessel normalization by VEGF inhibition also obviously reversed the tumor immune-suppression microenvironment. Finally, the growth of solid tumors was significantly depressed by such well-designed BSA-MHI148@SRF nanoparticles, which could be potential for clinical cancer therapy.
J Control Release. 2022-12
ACS Appl Mater Interfaces. 2024-6-12
Mater Today Bio. 2025-4-17
J Nanobiotechnology. 2024-11-10
J Nanobiotechnology. 2024-10-18
Commun Chem. 2024-8-13
Acta Pharm Sin B. 2022-1
J Nanobiotechnology. 2021-12-18