Narayanan Kannan Badri, Bhaskar Rakesh, Seok Yong Joo, Han Sung Soo
School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea.
Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea.
Microorganisms. 2023 Jul 14;11(7):1810. doi: 10.3390/microorganisms11071810.
The biological synthesis of nanocomposites has become cost-effective and environmentally friendly and can achieve sustainability with high efficiency. Recently, the biological synthesis of semiconductor and metal-doped semiconductor nanocomposites with enhanced photocatalytic degradation efficiency, anticancer, and antibacterial properties has attracted considerable attention. To this end, for the first time, we biosynthesized zinc oxide (ZnO) and silver/ZnO nanocomposites (Ag/ZnO NCs) as semiconductor and metal-doped semiconductor nanocomposites, respectively, using the cell-free filtrate (CFF) of the bacterium . The biosynthesized ZnO and Ag/ZnO NCs were characterized by various techniques, such as ultraviolet-visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The photocatalytic degradation potential of these semiconductor NPs and metal-semiconductor NCs was evaluated against thiazine dye, methylene blue (MB) degradation, under simulated solar irradiation. Ag/ZnO showed 90.4 ± 0.46% photocatalytic degradation of MB, compared to 38.18 ± 0.15% by ZnO in 120 min. The cytotoxicity of ZnO and Ag/ZnO on human cervical HeLa cancer cells was determined using an MTT assay. Both nanomaterials exhibited cytotoxicity in a concentration- and time-dependent manner on HeLa cells. The antibacterial activity was also determined against Gram-negative () and Gram-positive (). Compared to ZnO, Ag/ZnO NCs showed higher antibacterial activity. Hence, the biosynthesis of semiconductor nanoparticles could be a promising strategy for developing hybrid metal/semiconductor nanomaterials for different biomedical and environmental applications.
纳米复合材料的生物合成已变得具有成本效益且环境友好,并且能够高效实现可持续性。最近,具有增强的光催化降解效率、抗癌和抗菌性能的半导体及金属掺杂半导体纳米复合材料的生物合成引起了相当大的关注。为此,我们首次分别使用该细菌的无细胞滤液(CFF)生物合成了氧化锌(ZnO)和银/氧化锌纳米复合材料(Ag/ZnO NCs)作为半导体和金属掺杂半导体纳米复合材料。通过各种技术对生物合成的ZnO和Ag/ZnO NCs进行了表征,如紫外可见光谱、X射线衍射、傅里叶变换红外光谱、场发射扫描电子显微镜、透射电子显微镜和光致发光光谱。在模拟太阳辐射下,针对噻嗪染料亚甲基蓝(MB)的降解评估了这些半导体纳米颗粒和金属 - 半导体纳米复合材料的光催化降解潜力。在120分钟内,Ag/ZnO对MB的光催化降解率为90.4±0.46%,而ZnO为38.18±0.15%。使用MTT法测定了ZnO和Ag/ZnO对人宫颈HeLa癌细胞的细胞毒性。两种纳米材料对HeLa细胞均表现出浓度和时间依赖性的细胞毒性。还测定了对革兰氏阴性菌()和革兰氏阳性菌()的抗菌活性。与ZnO相比,Ag/ZnO NCs表现出更高的抗菌活性。因此,半导体纳米颗粒的生物合成可能是开发用于不同生物医学和环境应用的混合金属/半导体纳米材料的一种有前途的策略。