Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA.
Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA.
Molecules. 2023 Jul 13;28(14):5375. doi: 10.3390/molecules28145375.
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals in widespread use that have been shown to be toxic to wildlife and humans. Human serum albumin (HSA) is a known transport protein that binds PFAS at various sites, leading to bioaccumulation and long-term toxicity. In silico tools like quantitative structure-activity relationship (QSAR), read-across, and quantitative read-across structure-property relationship (q-RASPR) are proven techniques for modeling chemical toxicity based on experimental data which can be used to predict the toxicity of untested and new chemicals, while at the same time, help to identify the major features responsible for toxicity. Classification-based and regression-based QSAR models are employed in the present study to predict the binding affinities of 24 PFAS to HSA. Regression-based QSAR models revealed that the packing density index () and quantitative estimation of drug-likeness () descriptors were both positively correlated with higher binding affinity, while the classification-based QSAR model showed the average connectivity index of order 4 (4) descriptor was inversely correlated with binding affinity. Whereas molecular docking studies suggested that PFAS with the highest binding affinity to HSA create hydrogen bonds with Arg348 and salt bridges with Arg348 and Arg485, PFAS with lower binding affinity either showed no interactions with either amino acid or only interactions with Arg348. Among the studied PFAS, perfluoroalkyl acids (PFAA) with large carbon chain length (>C10) have one of the lowest binding affinities, compared to PFAA with carbon chain length ranging from 7 to 9, which showed the highest affinity to HSA. Generalized Read-Across (GenRA) was used to predict toxicity outcomes for the top five highest binding affinity PFAS based on 10 structural analogs for each and found that all are predicted as being chronic to sub-chronically toxic to HSA. The developed in silico models presented in this work can provide a framework for designing PFAS alternatives, screening compounds currently in use, and for the study of PFAS mixture toxicity, which is an area of intense research.
全氟和多氟烷基物质 (PFAS) 是广泛使用的合成化学品,已被证明对野生动物和人类具有毒性。人血清白蛋白 (HSA) 是一种已知的转运蛋白,它可以在不同部位结合 PFAS,导致生物蓄积和长期毒性。定量构效关系 (QSAR)、读-跨和定量读-跨结构-性质关系 (q-RASPR) 等计算工具是基于实验数据建模化学毒性的成熟技术,可用于预测未经测试和新化学品的毒性,同时有助于识别导致毒性的主要特征。本研究采用分类和回归 QSAR 模型来预测 24 种 PFAS 与 HSA 的结合亲和力。回归 QSAR 模型表明,堆积密度指数 () 和药物相似性定量估计 () 描述符均与更高的结合亲和力呈正相关,而分类 QSAR 模型则显示第 4 阶平均连接指数 (4) 描述符与结合亲和力呈负相关。尽管分子对接研究表明与 HSA 结合亲和力最高的 PFAS 与 Arg348 形成氢键,并与 Arg348 和 Arg485 形成盐桥,但与这两种氨基酸都没有相互作用或仅与 Arg348 相互作用的 PFAS 结合亲和力较低。在所研究的 PFAS 中,与碳链长度为 7 至 9 的 PFAA 相比,具有较大碳链长度 (>C10) 的全氟烷基酸 (PFAA) 的结合亲和力最低,而碳链长度为 7 至 9 的 PFAA 与 HSA 的结合亲和力最高。广义读跨 (GenRA) 用于根据每种物质的 10 种结构类似物预测前 5 种结合亲和力最高的 PFAS 的毒性结果,发现所有这些物质都被预测为对 HSA 具有慢性至亚慢性毒性。本工作中提出的计算模型可以为设计 PFAS 替代品、筛选目前使用的化合物以及研究 PFAS 混合物毒性提供框架,这是一个研究热点。