Suppr超能文献

一种用于量化全氟和多氟烷基物质血清白蛋白结合的体外和机器学习框架。

An in vitro and machine learning framework for quantifying serum albumin binding of per- and polyfluoroalkyl substances.

作者信息

Starnes Hannah M, Green Adrian J, Reif David M, Belcher Scott M

机构信息

Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States.

Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, United States.

出版信息

Toxicol Sci. 2025 Jan 1;203(1):67-78. doi: 10.1093/toxsci/kfae124.

Abstract

Per- and polyfluoroalkyl substances (PFAS) are a diverse class of anthropogenic chemicals; many are persistent, bioaccumulative, and mobile in the environment. Worldwide, PFAS bioaccumulation causes serious adverse health impacts, yet the physiochemical determinants of bioaccumulation and toxicity for most PFAS are not well understood, largely due to experimental data deficiencies. As most PFAS are proteinophilic, protein binding is a critical parameter for predicting PFAS bioaccumulation and toxicity. Among these proteins, human serum albumin (HSA) is the predominant blood transport protein for many PFAS. We previously demonstrated the utility of an in vitro differential scanning fluorimetry assay for determining relative HSA binding affinities for 24 PFAS. Here, we report HSA affinities for 65 structurally diverse PFAS from 20 chemical classes. We leverage these experimental data, and chemical/molecular descriptors of PFAS, to build 7 machine learning classifier algorithms and 9 regression algorithms, and evaluate their performance to identify the best predictive binding models. Evaluation of model accuracy revealed that the top-performing classifier model, logistic regression, had an AUROC (area under the receiver operating characteristic curve) statistic of 0.936. The top-performing regression model, support vector regression, had an R2 of 0.854. These top-performing models were then used to predict HSA-PFAS binding for chemicals in the EPAPFASINV list of 430 PFAS. These developed in vitro and in silico methodologies represent a high-throughput framework for predicting protein-PFAS binding based on empirical data, and generate directly comparable binding data of potential use in predictive modeling of PFAS bioaccumulation and other toxicokinetic endpoints.

摘要

全氟和多氟烷基物质(PFAS)是一类多样的人为合成化学物质;其中许多物质在环境中具有持久性、生物累积性且易于迁移。在全球范围内,PFAS的生物累积会对健康造成严重的不利影响,然而,由于实验数据不足,大多数PFAS生物累积和毒性的物理化学决定因素尚未得到很好的理解。由于大多数PFAS具有亲蛋白性,蛋白质结合是预测PFAS生物累积和毒性的关键参数。在这些蛋白质中,人血清白蛋白(HSA)是许多PFAS的主要血液转运蛋白。我们之前展示了一种体外差示扫描荧光法测定24种PFAS相对HSA结合亲和力的实用性。在此,我们报告了来自20个化学类别的65种结构多样的PFAS与HSA的亲和力。我们利用这些实验数据以及PFAS的化学/分子描述符,构建了7种机器学习分类算法和9种回归算法,并评估它们的性能以确定最佳预测结合模型。对模型准确性的评估表明,表现最佳的分类器模型逻辑回归的受试者工作特征曲线下面积(AUROC)统计值为0.936。表现最佳的回归模型支持向量回归的R2为0.854。然后使用这些表现最佳的模型来预测430种PFAS的EPA PFAS INV列表中化学物质与HSA - PFAS的结合情况。这些开发的体外和计算机模拟方法代表了一个基于经验数据预测蛋白质 - PFAS结合的高通量框架,并生成了在PFAS生物累积和其他毒代动力学终点预测建模中可能有用的直接可比的结合数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e346/11664106/e9c37cd7b9ec/kfae124f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验