Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadskogo pr. 86, 119571 Moscow, Russia.
Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
Molecules. 2023 Jul 14;28(14):5418. doi: 10.3390/molecules28145418.
Mammalian 15-lipoxygenases (ALOX15) are lipid peroxidizing enzymes that exhibit variable functionality in different cancer and inflammation models. The pathophysiological role of linoleic acid- and arachidonic acid-derived ALOX15 metabolites rendered this enzyme a target for pharmacological research. Several indole and imidazole derivatives inhibit the catalytic activity of rabbit ALOX15 in a substrate-specific manner, but the molecular basis for this allosteric inhibition remains unclear. Here, we attempt to define a common pharmacophore, which is critical for this allosteric inhibition. We found that substituted imidazoles induce weaker inhibitory effects when compared with the indole derivatives. In silico docking studies and molecular dynamics simulations using a dimeric allosteric enzyme model, in which the inhibitor occupies the substrate-binding pocket of one monomer, whereas the substrate fatty acid is bound at the catalytic center of another monomer within the ALOX15 dimer, indicated that chemical modification of the core pharmacophore alters the enzyme-inhibitor interactions, inducing a reduced inhibitory potency. In our dimeric ALOX15 model, the structural differences induced by inhibitor binding are translated to the hydrophobic dimerization cluster and affect the structures of enzyme-substrate complexes. These data are of particular importance since substrate-specific inhibition may contribute to elucidation of the putative roles of ALOX15 metabolites derived from different polyunsaturated fatty acids in mammalian pathophysiology.
哺乳动物 15-脂氧合酶(ALOX15)是脂质过氧化酶,在不同的癌症和炎症模型中表现出不同的功能。亚油酸和花生四烯酸衍生的 ALOX15 代谢物的病理生理作用使该酶成为药物研究的靶点。几种吲哚和咪唑衍生物以底物特异性方式抑制兔 ALOX15 的催化活性,但这种变构抑制的分子基础仍不清楚。在这里,我们试图定义一个共同的药效团,这对这种变构抑制至关重要。我们发现,与吲哚衍生物相比,取代的咪唑诱导的抑制作用较弱。使用二聚体变构酶模型的计算对接研究和分子动力学模拟,其中抑制剂占据一个单体的底物结合口袋,而底物脂肪酸结合在另一个单体的催化中心内的 ALOX15 二聚体,表明核心药效团的化学修饰改变了酶-抑制剂相互作用,导致抑制效力降低。在我们的二聚体 ALOX15 模型中,抑制剂结合引起的结构差异被转化为疏水性二聚化簇,并影响酶-底物复合物的结构。这些数据尤其重要,因为底物特异性抑制可能有助于阐明来自不同多不饱和脂肪酸的 ALOX15 代谢物在哺乳动物病理生理学中的潜在作用。