文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Hydrophilic Copolymers with Hydroxamic Acid Groups as a Protective Biocompatible Coating of Maghemite Nanoparticles: Synthesis, Physico-Chemical Characterization and MRI Biodistribution Study.

作者信息

Charvátová Hana, Plichta Zdeněk, Hromádková Jiřina, Herynek Vít, Babič Michal

机构信息

Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Náměstí 2, 162 06 Prague, Czech Republic.

Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, 120 00 Prague, Czech Republic.

出版信息

Pharmaceutics. 2023 Jul 19;15(7):1982. doi: 10.3390/pharmaceutics15071982.


DOI:10.3390/pharmaceutics15071982
PMID:37514168
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10384990/
Abstract

Superparamagnetic iron oxide nanoparticles (SPION) with a "non-fouling" surface represent a versatile group of biocompatible nanomaterials valuable for medical diagnostics, including oncology. In our study we present a synthesis of novel maghemite (γ-FeO) nanoparticles with positive and negative overall surface charge and their coating by copolymer P(HPMA--HAO) prepared by RAFT (reversible addition-fragmentation chain-transfer) copolymerization of N-(2-hydroxypropyl)methacrylamide (HPMA) with N-[2-(hydroxyamino)-2-oxo-ethyl]-2-methyl-prop-2-enamide (HAO). Coating was realized via hydroxamic acid groups of the HAO comonomer units with a strong affinity to maghemite. Dynamic light scattering (DLS) demonstrated high colloidal stability of the coated particles in a wide pH range, high ionic strength, and the presence of phosphate buffer (PBS) and serum albumin (BSE). Transmission electron microscopy (TEM) images show a narrow size distribution and spheroid shape. Alternative coatings were prepared by copolymerization of HPMA with methyl 2-(2-methylprop-2-enoylamino)acetate (MMA) and further post-polymerization modification with hydroxamic acid groups, carboxylic acid and primary-amino functionalities. Nevertheless, their colloidal stability was worse in comparison with P(HPMA--HAO). Additionally, P(HPMA--HAO)-coated nanoparticles were subjected to a bio-distribution study in mice. They were cleared from the blood stream by the liver relatively slowly, and their half-life in the liver depended on their charge; nevertheless, both cationic and anionic particles revealed a much shorter metabolic clearance rate than that of commercially available ferucarbotran.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/4516eec901b2/pharmaceutics-15-01982-sch007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/4afe8e2c7f34/pharmaceutics-15-01982-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/e47fa037a328/pharmaceutics-15-01982-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/f08a6c20a21e/pharmaceutics-15-01982-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/8709443c3f47/pharmaceutics-15-01982-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/1d5b754efc5c/pharmaceutics-15-01982-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/ee4ad3ee6c68/pharmaceutics-15-01982-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/e8af14970b60/pharmaceutics-15-01982-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/a55800b2f7de/pharmaceutics-15-01982-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/0159b64007e1/pharmaceutics-15-01982-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/c53bce5a06b5/pharmaceutics-15-01982-sch002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/a830add952d1/pharmaceutics-15-01982-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/731983098005/pharmaceutics-15-01982-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/48d4abcb4fc7/pharmaceutics-15-01982-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/39ae5776420a/pharmaceutics-15-01982-sch005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/ed1d3c043818/pharmaceutics-15-01982-sch006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/4516eec901b2/pharmaceutics-15-01982-sch007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/4afe8e2c7f34/pharmaceutics-15-01982-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/e47fa037a328/pharmaceutics-15-01982-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/f08a6c20a21e/pharmaceutics-15-01982-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/8709443c3f47/pharmaceutics-15-01982-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/1d5b754efc5c/pharmaceutics-15-01982-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/ee4ad3ee6c68/pharmaceutics-15-01982-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/e8af14970b60/pharmaceutics-15-01982-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/a55800b2f7de/pharmaceutics-15-01982-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/0159b64007e1/pharmaceutics-15-01982-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/c53bce5a06b5/pharmaceutics-15-01982-sch002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/a830add952d1/pharmaceutics-15-01982-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/731983098005/pharmaceutics-15-01982-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/48d4abcb4fc7/pharmaceutics-15-01982-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/39ae5776420a/pharmaceutics-15-01982-sch005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/ed1d3c043818/pharmaceutics-15-01982-sch006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2448/10384990/4516eec901b2/pharmaceutics-15-01982-sch007.jpg

相似文献

[1]
Hydrophilic Copolymers with Hydroxamic Acid Groups as a Protective Biocompatible Coating of Maghemite Nanoparticles: Synthesis, Physico-Chemical Characterization and MRI Biodistribution Study.

Pharmaceutics. 2023-7-19

[2]
HPMA copolymers as surfactants in the preparation of biocompatible nanoparticles for biomedical application.

Biomacromolecules. 2012-11-26

[3]
Poly(,-dimethylacrylamide)-coated maghemite nanoparticles for labeling and tracking mesenchymal stem cells

2004

[4]
Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling.

Bioconjug Chem. 2009-2

[5]
Highly effective anti-tumor nanomedicines based on HPMA copolymer conjugates with pirarubicin prepared by controlled RAFT polymerization.

Acta Biomater. 2020-4-1

[6]
Biocompatible polysiloxane-containing diblock copolymer PEO-b-PgammaMPS for coating magnetic nanoparticles.

ACS Appl Mater Interfaces. 2009-10

[7]
Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.

J Vis Exp. 2019-4-30

[8]
Effect of nitric acid concentrations on synthesis and stability of maghemite nanoparticles suspension.

ScientificWorldJournal. 2014

[9]
Synthesis of Biodegradable Multiblock Copolymers by Click Coupling of RAFT-Generated HeterotelechelicPolyHPMA Conjugates.

React Funct Polym. 2011-3-1

[10]
Low toxic maghemite nanoparticles for theranostic applications.

Int J Nanomedicine. 2017-8-31

引用本文的文献

[1]
Nickel Ferrite Nanoparticles for In Vivo Multimodal Magnetic Resonance and Magnetic Particle Imaging.

ACS Appl Nano Mater. 2025-7-16

本文引用的文献

[1]
Au-Coated Superparamagnetic Iron Oxide Nanoparticles for Dual Magnetic Hyperthermia and Radionuclide Therapy of Hepatocellular Carcinoma.

Int J Mol Sci. 2023-3-9

[2]
Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture.

Plants (Basel). 2022-11-12

[3]
Antitumor Activity of Chitosan-Coated Iron Oxide Nanocomposite Against Hepatocellular Carcinoma in Animal Models.

Biol Trace Elem Res. 2023-3

[4]
Dextran-Coated Iron Oxide Nanoparticles Loaded with Curcumin for Antimicrobial Therapies.

Pharmaceutics. 2022-5-14

[5]
Hyperthermia-Induced In Situ Drug Amorphization by Superparamagnetic Nanoparticles in Oral Dosage Forms.

ACS Appl Mater Interfaces. 2022-5-18

[6]
Enhanced fluorescence/magnetic resonance dual imaging and gene therapy of liver cancer using cationized amylose nanoprobe.

Mater Today Bio. 2022-2-15

[7]
Superferromagnetic Nanoparticles Enable Order-of-Magnitude Resolution & Sensitivity Gain in Magnetic Particle Imaging.

Small Methods. 2021-11

[8]
Unveiling the role of surface, size, shape and defects of iron oxide nanoparticles for theranostic applications.

Nanoscale. 2021-9-2

[9]
Iron Oxide Nanoparticles as Theranostic Agents in Cancer Immunotherapy.

Nanomaterials (Basel). 2021-7-29

[10]
Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for magnetic resonance imaging.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索