文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

载金-钴核壳结构超顺磁性氧化铁纳米粒子用于肝癌的双重磁热疗与放射性核素治疗

Au-Coated Superparamagnetic Iron Oxide Nanoparticles for Dual Magnetic Hyperthermia and Radionuclide Therapy of Hepatocellular Carcinoma.

机构信息

Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland.

Faculty of Chemistry, University of Warsaw, Pasteura 1 St., 02-093 Warsaw, Poland.

出版信息

Int J Mol Sci. 2023 Mar 9;24(6):5282. doi: 10.3390/ijms24065282.


DOI:10.3390/ijms24065282
PMID:36982357
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10049102/
Abstract

This study was performed to synthesize a radiopharmaceutical designed for multimodal hepatocellular carcinoma (HCC) treatment involving radionuclide therapy and magnetic hyperthermia. To achieve this goal, the superparamagnetic iron oxide (magnetite) nanoparticles (SPIONs) were covered with a layer of radioactive gold (Au) creating core-shell nanoparticles (SPION@Au). The synthesized SPION@Au nanoparticles exhibited superparamagnetic properties with a saturation magnetization of 50 emu/g, which is lower than reported for uncoated SPIONs (83 emu/g). Nevertheless, the SPION@Au core-shell nanoparticles showed a sufficiently high saturation magnetization value which allows them to reach a temperature of 43 °C at a magnetic field frequency of 386 kHz. The cytotoxic effect of nonradioactive and radioactive SPION@Au-polyethylene glycol (PEG) bioconjugates was carried out by treating HepG2 cells with various concentrations (1.25-100.00 µg/mL) of the compound and radioactivity in range of 1.25-20 MBq/mL. The moderate cytotoxic effect of nonradioactive SPION@Au-PEG bioconjugates on HepG2 was observed. The cytotoxic effect associated with the β radiation emitted by Au was much greater and already reaches a cell survival fraction below 8% for 2.5 MBq/mL of radioactivity after 72 h. Thus, the killing of HepG2 cells in HCC therapy should be possible due to the combination of the heat-generating properties of the SPION-Au-PEG conjugates and the radiotoxicity of the radiation emitted by Au.

摘要

本研究旨在合成一种用于多模态肝细胞癌(HCC)治疗的放射性药物,该治疗方法涉及放射性核素治疗和磁热疗。为了实现这一目标,超顺磁氧化铁(磁铁矿)纳米颗粒(SPION)被一层放射性金(Au)覆盖,形成核壳纳米颗粒(SPION@Au)。合成的 SPION@Au 纳米颗粒表现出超顺磁性,饱和磁化强度为 50 emu/g,低于未包覆的 SPION(83 emu/g)的报道值。然而,SPION@Au 核壳纳米颗粒表现出足够高的饱和磁化强度值,使其能够在磁场频率为 386 kHz 的情况下达到 43°C 的温度。通过用不同浓度(1.25-100.00 µg/mL)的化合物和放射性活度范围为 1.25-20 MBq/mL 的放射性处理 HepG2 细胞,研究了非放射性和放射性 SPION@Au-聚乙二醇(PEG)生物缀合物的细胞毒性作用。观察到非放射性 SPION@Au-PEG 生物缀合物对 HepG2 的中等细胞毒性作用。由 Au 发射的β辐射引起的细胞毒性作用要强得多,在 72 h 后,放射性活度为 2.5 MBq/mL 时,细胞存活率已低于 8%。因此,由于 SPION-Au-PEG 缀合物的产热特性和 Au 发射的辐射的放射毒性的结合,应该有可能在 HCC 治疗中杀死 HepG2 细胞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd2/10049102/a9490a289a54/ijms-24-05282-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd2/10049102/f119fa01a56b/ijms-24-05282-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd2/10049102/a82660991417/ijms-24-05282-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd2/10049102/10244883c039/ijms-24-05282-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd2/10049102/9e78ffce79cc/ijms-24-05282-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd2/10049102/736473071892/ijms-24-05282-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd2/10049102/d4f298c19d94/ijms-24-05282-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd2/10049102/a9490a289a54/ijms-24-05282-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd2/10049102/f119fa01a56b/ijms-24-05282-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd2/10049102/a82660991417/ijms-24-05282-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd2/10049102/10244883c039/ijms-24-05282-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd2/10049102/9e78ffce79cc/ijms-24-05282-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd2/10049102/736473071892/ijms-24-05282-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd2/10049102/d4f298c19d94/ijms-24-05282-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd2/10049102/a9490a289a54/ijms-24-05282-g007.jpg

相似文献

[1]
Au-Coated Superparamagnetic Iron Oxide Nanoparticles for Dual Magnetic Hyperthermia and Radionuclide Therapy of Hepatocellular Carcinoma.

Int J Mol Sci. 2023-3-9

[2]
Synthesis and Characterization of Citrate-Stabilized Gold-Coated Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications.

Molecules. 2020-9-26

[3]
Hybrid Radiobioconjugated Superparamagnetic Iron Oxide-Based Nanoparticles for Multimodal Cancer Therapy.

Pharmaceutics. 2021-11-2

[4]
90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours.

Nanotechnology. 2022-7-15

[5]
Pharmaceutical Quality by Design Approach to Develop High-Performance Nanoparticles for Magnetic Hyperthermia.

ACS Nano. 2024-6-11

[6]
N-Hydroxysuccinamide functionalized iron oxide nanoparticles conjugated with 5-flurouracil for hyperthermic therapy of malignant liver cancer cells by DNA repair disruption.

Int J Biol Macromol. 2023-10-1

[7]
Polymeric Reactor for the Synthesis of Superparamagnetic-Thermal Treatment of Breast Cancer.

Mol Pharm. 2019-7-24

[8]
Influence of SPION Surface Coating on Magnetic Properties and Theranostic Profile.

Molecules. 2024-4-17

[9]
Delivery of Superparamagnetic Polymeric Micelles Loaded With Quercetin to Hepatocellular Carcinoma Cells.

J Pharm Sci. 2018-8-16

[10]
Superparamagnetic iron-oxide nanoparticles mPEG350- and mPEG2000-coated: cell uptake and biocompatibility evaluation.

Nanomedicine. 2016-1-6

引用本文的文献

[1]
Radionuclide-labeled nanomaterials for tumor therapy: Recent progress and perspectives.

Mater Today Bio. 2025-8-5

[2]
Schottky barrier in pea-like Au@BiS nanoreactor enabling efficient photodynamic therapy of hepatocellular carcinoma.

Mater Today Bio. 2025-6-19

[3]
Promising biomedical applications using superparamagnetic nanoparticles.

Eur J Med Res. 2025-6-2

[4]
Lu-Gold Nanohybrids in Radiotherapeutic Approaches Against Cancer.

Small Sci. 2024-12-12

[5]
Insights into the history and trends of nanotechnology for the treatment of hepatocellular carcinoma: a bibliometric-based visual analysis.

Discov Oncol. 2025-4-7

[6]
Nanomaterials for liver cancer targeting: research progress and future prospects.

Front Immunol. 2025-2-28

[7]
Magnetic-Plasmonic Core-Shell Nanoparticles: Properties, Synthesis and Applications for Cancer Detection and Treatment.

Nanomaterials (Basel). 2025-2-10

[8]
Au@Pd Core-Shell Nanoparticles Conjugated to Panitumumab for the Combined β-Auger Electron Therapy of Triple-Negative Breast Cancer.

Int J Mol Sci. 2024-12-18

[9]
Radionuclide-labelled nanoparticles for cancer combination therapy: a review.

J Nanobiotechnology. 2024-11-22

[10]
Selective Removal of Chlorophyll and Isolation of Lutein from Plant Extracts Using Magnetic Solid Phase Extraction with Iron Oxide Nanoparticles.

Int J Mol Sci. 2024-3-9

本文引用的文献

[1]
Multifunctional Nanoparticles Based on Iron Oxide and Gold-198 Designed for Magnetic Hyperthermia and Radionuclide Therapy as a Potential Tool for Combined HER2-Positive Cancer Treatment.

Pharmaceutics. 2022-8-12

[2]
Current Challenges in Image-Guided Magnetic Hyperthermia Therapy for Liver Cancer.

Nanomaterials (Basel). 2022-8-12

[3]
Functionalized Magnetic Nanoparticles for Alternating Magnetic Field- or Near Infrared Light-Induced Cancer Therapies.

Micromachines (Basel). 2022-8-8

[4]
90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours.

Nanotechnology. 2022-7-15

[5]
Magnetic Nanomaterials for Arterial Embolization and Hyperthermia of Parenchymal Organs Tumors: A Review.

Nanomaterials (Basel). 2021-12-15

[6]
Conventional versus drug-eluting bead transarterial chemoembolization: A better option for treatment of unresectable hepatocellular carcinoma.

J Interv Med. 2020-11-10

[7]
Current Strategies to Identify Patients That Will Benefit from TACE Treatment and Future Directions a Practical Step-by-Step Guide.

J Hepatocell Carcinoma. 2021-5-13

[8]
Nanotechnology Based Approach for Hepatocellular Carcinoma Targeting.

Curr Drug Targets. 2021

[9]
Trastuzumab Modified Barium Ferrite Magnetic Nanoparticles Labeled with Radium-223: A New Potential Radiobioconjugate for Alpha Radioimmunotherapy.

Nanomaterials (Basel). 2020-10-20

[10]
Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy.

Int J Mol Sci. 2020-7-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索