文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Dextran-Coated Iron Oxide Nanoparticles Loaded with Curcumin for Antimicrobial Therapies.

作者信息

Chircov Cristina, Ștefan Raluca-Elena, Dolete Georgiana, Andrei Adriana, Holban Alina Maria, Oprea Ovidiu-Cristian, Vasile Bogdan Stefan, Neacșu Ionela Andreea, Tihăuan Bianca

机构信息

Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania.

National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania.

出版信息

Pharmaceutics. 2022 May 14;14(5):1057. doi: 10.3390/pharmaceutics14051057.


DOI:10.3390/pharmaceutics14051057
PMID:35631644
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9146385/
Abstract

The current trend in antimicrobial-agent development focuses on the use of natural compounds that limit the toxicity of conventional drugs and provide a potential solution to the antimicrobial resistance crisis. Curcumin represents a natural bioactive compound with well-known antimicrobial, anticancer, and antioxidant properties. However, its hydrophobicity considerably limits the possibility of body administration. Therefore, dextran-coated iron oxide nanoparticles can be used as efficient drug-delivery supports that could overcome this limitation. The iron oxide nanoparticles were synthesized through the microwave-assisted hydrothermal method by varying the treatment parameters (pressure and reaction time). The nanoparticles were subsequently coated with dextran and used for the loading of curcumin (in various concentrations). The drug-delivery systems were characterized through X-ray diffraction (XRD) coupled with Rietveld refinement, transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), selected area electron diffraction (SAED), dynamic light scattering (DLS) and zeta potential, thermogravimetry and differential scanning calorimetry (TG-DSC), vibrating sample magnetometry (VSM), and UV-Vis spectrophotometry, as well as regarding their antimicrobial efficiency and biocompatibility using the appropriate assays. The results demonstrate a promising antimicrobial efficiency, as well as an increased possibility of controlling the properties of the resulted nanosystems. Thus, the present study represents an important step forward toward the development of highly efficient antimicrobial drug-delivery systems.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/b038a595d503/pharmaceutics-14-01057-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/02119c8b7103/pharmaceutics-14-01057-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/d9b4db9f5144/pharmaceutics-14-01057-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/76e958d3ac9b/pharmaceutics-14-01057-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/54c21ebfddad/pharmaceutics-14-01057-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/71057b51bcdb/pharmaceutics-14-01057-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/e1cd344e20f4/pharmaceutics-14-01057-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/2f63ffc43b6b/pharmaceutics-14-01057-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/4b60dd472d21/pharmaceutics-14-01057-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/d1d86cbb28a3/pharmaceutics-14-01057-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/b690a673110b/pharmaceutics-14-01057-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/1e1aa2cbb719/pharmaceutics-14-01057-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/42fe12c1da3b/pharmaceutics-14-01057-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/dea0a0f57d25/pharmaceutics-14-01057-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/b038a595d503/pharmaceutics-14-01057-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/02119c8b7103/pharmaceutics-14-01057-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/d9b4db9f5144/pharmaceutics-14-01057-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/76e958d3ac9b/pharmaceutics-14-01057-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/54c21ebfddad/pharmaceutics-14-01057-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/71057b51bcdb/pharmaceutics-14-01057-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/e1cd344e20f4/pharmaceutics-14-01057-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/2f63ffc43b6b/pharmaceutics-14-01057-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/4b60dd472d21/pharmaceutics-14-01057-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/d1d86cbb28a3/pharmaceutics-14-01057-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/b690a673110b/pharmaceutics-14-01057-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/1e1aa2cbb719/pharmaceutics-14-01057-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/42fe12c1da3b/pharmaceutics-14-01057-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/dea0a0f57d25/pharmaceutics-14-01057-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bc/9146385/b038a595d503/pharmaceutics-14-01057-g014.jpg

相似文献

[1]
Dextran-Coated Iron Oxide Nanoparticles Loaded with Curcumin for Antimicrobial Therapies.

Pharmaceutics. 2022-5-14

[2]
Iron Oxide-Silica Core-Shell Nanoparticles Functionalized with Essential Oils for Antimicrobial Therapies.

Antibiotics (Basel). 2021-9-21

[3]
Microfluidic Synthesis of Magnetite Nanoparticles for the Controlled Release of Antibiotics.

Pharmaceutics. 2023-8-27

[4]
Microfluidic Synthesis of -NH- and -COOH-Functionalized Magnetite Nanoparticles.

Nanomaterials (Basel). 2022-9-12

[5]
Effect of crosslinker on drug delivery properties of curcumin loaded starch coated iron oxide nanoparticles.

Int J Biol Macromol. 2016-9-21

[6]
Preparation and characterization of chitosan-Polyethylene glycol-polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles as carrier system: Drug loading and in vitro drug release study.

J Biomed Mater Res B Appl Biomater. 2016-5

[7]
Synthesis and characterization of dextran coated magnetite nanoparticles for diagnostics and therapy.

Bioimpacts. 2015

[8]
Dextran coated iron oxide nanoparticles loaded with protocatechuic acid as multifunctional therapeutic agents.

Int J Biol Macromol. 2024-1

[9]
Microwave-Assisted Silanization of Magnetite Nanoparticles Pre-Synthesized by a 3D Microfluidic Platform.

Nanomaterials (Basel). 2023-10-20

[10]
Magnetic bio-metal-organic framework nanocomposites decorated with folic acid conjugated chitosan as a promising biocompatible targeted theranostic system for cancer treatment.

Mater Sci Eng C Mater Biol Appl. 2019-2-6

引用本文的文献

[1]
Co-Formulation of Iron Oxide and PLGA Nanoparticles to Deliver Curcumin and IFNα for Synergistic Anticancer Activity in A375 Melanoma Skin Cancer Cells.

Pharmaceutics. 2025-6-30

[2]
Novel Magnetically Recoverable Amino-Functionalized MIL-101(Fe) Composite with Enhanced Adsorption Capacity for Pb(II) and Cd(II) Ions.

Molecules. 2025-7-7

[3]
Breaking barriers: Smart vaccine platforms for cancer immunomodulation.

Cancer Commun (Lond). 2025-5

[4]
Magnetically Controlled Transport of Nanoparticles in Solid Tumor Tissues and Porous Media Using a Tumor-on-a-Chip Format.

Nanomaterials (Basel). 2024-12-17

[5]
Aminoacid functionalised magnetite nanoparticles FeO@AA (AA = Ser, Cys, Pro, Trp) as biocompatible magnetite nanoparticles with potential therapeutic applications.

Sci Rep. 2024-10-31

[6]
Cerium Dioxide-Dextran Nanocomposites in the Development of a Medical Product for Wound Healing: Physical, Chemical and Biomedical Characteristics.

Molecules. 2024-6-15

[7]
Microfluidic Synthesis of Magnetite Nanoparticles for the Controlled Release of Antibiotics.

Pharmaceutics. 2023-8-27

[8]
Hydrophilic Copolymers with Hydroxamic Acid Groups as a Protective Biocompatible Coating of Maghemite Nanoparticles: Synthesis, Physico-Chemical Characterization and MRI Biodistribution Study.

Pharmaceutics. 2023-7-19

[9]
Emerging Polymer-Based Nanosystem Strategies in the Delivery of Antifungal Drugs.

Pharmaceutics. 2023-7-1

[10]
Usnic Acid-Loaded Magnetite Nanoparticles-A Comparative Study between Synthesis Methods.

Molecules. 2023-7-4

本文引用的文献

[1]
PEG-Functionalized Magnetite Nanoparticles for Modulation of Microbial Biofilms on Voice Prosthesis.

Antibiotics (Basel). 2021-12-29

[2]
Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives.

Microorganisms. 2021-9-27

[3]
Anti-Biofilm Coatings Based on Chitosan and Lysozyme Functionalized Magnetite Nanoparticles.

Antibiotics (Basel). 2021-10-19

[4]
Iron Oxide-Silica Core-Shell Nanoparticles Functionalized with Essential Oils for Antimicrobial Therapies.

Antibiotics (Basel). 2021-9-21

[5]
Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens.

Front Pharmacol. 2021-7-21

[6]
Magnetism of Nanoparticles: Effect of the Organic Coating.

Nanomaterials (Basel). 2021-7-9

[7]
Preparation of Silicon Hydroxyapatite Nanopowders under Microwave-Assisted Hydrothermal Method.

Nanomaterials (Basel). 2021-6-11

[8]
The Biological Effects of Novel Nutraceuticals with Curcuminoids and Other Plant-Derived Immunomodulators and Pre-Probiotics.

Pharmaceutics. 2021-5-6

[9]
Inorganic Nanoparticles and Composite Films for Antimicrobial Therapies.

Int J Mol Sci. 2021-4-27

[10]
Eugenol-Functionalized Magnetite Nanoparticles Modulate Virulence and Persistence in Clinical Strains.

Molecules. 2021-4-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索