文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Nano- and Microemulsions in Biomedicine: From Theory to Practice.

作者信息

Nikolaev Boris, Yakovleva Ludmila, Fedorov Viacheslav, Li Hanmei, Gao Huile, Shevtsov Maxim

机构信息

Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia.

Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia.

出版信息

Pharmaceutics. 2023 Jul 20;15(7):1989. doi: 10.3390/pharmaceutics15071989.


DOI:10.3390/pharmaceutics15071989
PMID:37514175
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10383468/
Abstract

Nano- and microemulsions are colloidal systems that are widely used in various fields of biomedicine, including wound and burn healing, cosmetology, the development of antibacterial and antiviral drugs, oncology, etc. The stability of these systems is governed by the balance of molecular interactions between nanodomains. Microemulsions as a colloidal form play a special important role in stability. The microemulsion is the thermodynamically stable phase from oil, water, surfactant and co-surfactant which forms the surface of drops with very small surface energy. The last phenomena determines the shortage time of all fluid dispersions including nanoemulsions and emulgels. This review examines the theory and main methods of obtaining nano- and microemulsions, particularly focusing on the structure of microemulsions and methods for emulsion analysis. Additionally, we have analyzed the main preclinical and clinical studies in the field of wound healing and the use of emulsions in cancer therapy, emphasizing the prospects for further developments in this area.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/3b24b71bd203/pharmaceutics-15-01989-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/abbedc26fdee/pharmaceutics-15-01989-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/eebb63adc609/pharmaceutics-15-01989-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/f9e9d77d0b3c/pharmaceutics-15-01989-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/48c5b1ac1ed4/pharmaceutics-15-01989-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/4b348f873a81/pharmaceutics-15-01989-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/2f9b7d5eaf57/pharmaceutics-15-01989-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/11b304394c0f/pharmaceutics-15-01989-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/5476066694b1/pharmaceutics-15-01989-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/090f6c742f9f/pharmaceutics-15-01989-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/bba1ea412892/pharmaceutics-15-01989-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/c3ea66c2eadb/pharmaceutics-15-01989-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/8a336d34c1ef/pharmaceutics-15-01989-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/3b24b71bd203/pharmaceutics-15-01989-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/abbedc26fdee/pharmaceutics-15-01989-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/eebb63adc609/pharmaceutics-15-01989-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/f9e9d77d0b3c/pharmaceutics-15-01989-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/48c5b1ac1ed4/pharmaceutics-15-01989-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/4b348f873a81/pharmaceutics-15-01989-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/2f9b7d5eaf57/pharmaceutics-15-01989-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/11b304394c0f/pharmaceutics-15-01989-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/5476066694b1/pharmaceutics-15-01989-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/090f6c742f9f/pharmaceutics-15-01989-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/bba1ea412892/pharmaceutics-15-01989-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/c3ea66c2eadb/pharmaceutics-15-01989-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/8a336d34c1ef/pharmaceutics-15-01989-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/10383468/3b24b71bd203/pharmaceutics-15-01989-g013.jpg

相似文献

[1]
Nano- and Microemulsions in Biomedicine: From Theory to Practice.

Pharmaceutics. 2023-7-20

[2]
Formation of flavor oil microemulsions, nanoemulsions and emulsions: influence of composition and preparation method.

J Agric Food Chem. 2011-3-16

[3]
Microemulsions and Nanoemulsions in Skin Drug Delivery.

Bioengineering (Basel). 2022-4-5

[4]
Microemulsions as colloidal vehicle systems for dermal drug delivery. Part IV: Investigation of microemulsion systems based on a eutectic mixture of lidocaine and prilocaine as the colloidal phase by dynamic light scattering.

J Pharm Pharmacol. 2003-6

[5]
Microemulsions and nanoemulsions modified with cationic surfactants for improving the solubility and therapeutic efficacy of loaded drug indomethacin.

Nanotechnology. 2022-1-21

[6]
Supramolecular Tools to Improve Wound Healing and Antioxidant Properties of Abietic Acid: Biocompatible Microemulsions and Emulgels.

Molecules. 2022-9-30

[7]
Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery.

Int J Pharm. 2017-6-30

[8]
Application of microemulsions in dermal and transdermal drug delivery.

Skin Pharmacol Physiol. 2008

[9]
Microemulsions: a potential delivery system for bioactives in food.

Crit Rev Food Sci Nutr. 2006

[10]
Study of nano-emulsion formation by dilution of microemulsions.

J Colloid Interface Sci. 2012-3-7

引用本文的文献

[1]
Transdermal Drug Delivery Systems: Methods for Enhancing Skin Permeability and Their Evaluation.

Pharmaceutics. 2025-7-20

[2]
Droplet Size Reduction of Self-Emulsifying Drug Delivery System (SEDDS) Using the Hybrid of Medium and Long-Chain Triglycerides.

Pharmaceutics. 2025-6-25

[3]
Brazilian Green Propolis Carried in Lipid-Based Nanostructures: A Potent Adjuvant Therapy to Non-Surgical Periodontal Treatment in the Management of Experimental Periodontitis.

Biomedicines. 2025-7-4

[4]
Bioavailability for the Improved Therapeutic Profile of -Dehydrocrotonin Incorporated into a Copaiba Oil Self-Nanoemulsifying Drug Delivery System: Formulation, Physicochemical Characterizations, and Antioxidant In Vitro Effect.

Int J Mol Sci. 2025-5-8

[5]
Optimization of LCD-Based 3D Printing for the Development of Clotrimazole-Coated Microneedle Systems.

Materials (Basel). 2025-3-31

[6]
Magnetically Controlled Transport of Nanoparticles in Solid Tumor Tissues and Porous Media Using a Tumor-on-a-Chip Format.

Nanomaterials (Basel). 2024-12-17

[7]
Exploring the therapeutic potential of lipid-based nanoparticles in the management of oral squamous cell carcinoma.

Explor Target Antitumor Ther. 2024

[8]
Confinement induced change of microemulsion phase structure in controlled pore glass (CPG) monoliths.

RSC Adv. 2024-9-4

[9]
Mechanism, Formulation, and Efficacy Evaluation of Natural Products for Skin Pigmentation Treatment.

Pharmaceutics. 2024-8-1

[10]
Enhanced In Vitro Efficacy of Verbascoside in Suppressing Hepatic Stellate Cell Activation via ROS Scavenging with Reverse Microemulsion.

Antioxidants (Basel). 2024-7-27

本文引用的文献

[1]
Review on Some Confusion Produced by the Bicontinuous Microemulsion Terminology and Its Domains Microcurvature: A Simple Spatiotemporal Model at Optimum Formulation of Surfactant-Oil-Water Systems.

ACS Omega. 2023-3-2

[2]
Levofloxacin loaded clove oil nanoscale emulgel promotes wound healing in Pseudomonas aeruginosa biofilm infected burn wound in mice.

Colloids Surf B Biointerfaces. 2023-2

[3]
An icaritin-loaded microemulsion based on coix oil for improved pharmacokinetics and enhanced antitumor efficacy.

Drug Deliv. 2022-12

[4]
Cascade two-stage tumor re-oxygenation and immune re-sensitization mediated by self-assembled albumin-sorafenib nanoparticles for enhanced photodynamic immunotherapy.

Acta Pharm Sin B. 2022-11

[5]
Oral sorafenib-loaded microemulsion for breast cancer: evidences from the in-vitro evaluations and pharmacokinetic studies.

Sci Rep. 2022-8-12

[6]
A Fast, Reliable Oil-In-Water Microemulsion Procedure for Silica Coating of Ferromagnetic Zn Ferrite Nanoparticles Capable of Inducing Cancer Cell Death In Vitro.

Biomedicines. 2022-7-8

[7]
Design of Magnetic Hydrogels for Hyperthermia and Drug Delivery.

Polymers (Basel). 2021-12-4

[8]
Modern Wound Dressings: Hydrogel Dressings.

Biomedicines. 2021-9-16

[9]
Microemulsion for Prolonged Release of Fenretinide in the Mammary Tissue and Prevention of Breast Cancer Development.

Mol Pharm. 2021-9-6

[10]
Emulgel Loaded with Flaxseed Extracts as New Therapeutic Approach in Wound Treatment.

Pharmaceutics. 2021-7-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索