Suppr超能文献

利用芯片上肿瘤模型在实体瘤组织和多孔介质中对纳米颗粒进行磁控传输。

Magnetically Controlled Transport of Nanoparticles in Solid Tumor Tissues and Porous Media Using a Tumor-on-a-Chip Format.

作者信息

Zimina Tatiana, Sitkov Nikita, Brusina Ksenia, Fedorov Viacheslav, Mikhailova Natalia, Testov Dmitriy, Gareev Kamil, Samochernykh Konstantin, Combs Stephanie, Shevtsov Maxim

机构信息

Department of Micro and Nanoelectronics, St. Petersburg Electrotechnical University "LETI" (ETU "LETI"), Prof. Popova Str., 5, 197022 St. Petersburg, Russia.

Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia.

出版信息

Nanomaterials (Basel). 2024 Dec 17;14(24):2030. doi: 10.3390/nano14242030.

Abstract

This study addresses issues in developing spatially controlled magnetic fields for particle guidance, synthesizing biocompatible and chemically stable MNPs and enhancing their specificity to pathological cells through chemical modifications, developing personalized adjustments, and highlighting the potential of tumor-on-a-chip systems, which can simulate tissue environments and assess drug efficacy and dosage in a controlled setting. The research focused on two MNP types, uncoated magnetite nanoparticles (mMNPs) and carboxymethyl dextran coated superparamagnetic nanoparticles (CD-SPIONs), and evaluated their transport properties in microfluidic systems and porous media. The original uncoated mMNPs of bimodal size distribution and the narrow size distribution of the fractions (23 nm and 106 nm by radii) were demonstrated to agglomerate in magnetically driven microfluidic flow, forming a stable stationary web consisting of magnetic fibers within 30 min. CD-SPIONs were demonstrated to migrate in agar gel with the mean pore size equal to or slightly higher than the particle size. The migration velocity was inversely proportional to the size of particles. No compression of the gel was observed under the magnetic field gradient of 40 T/m. In the brain tissue, particles of sizes 220, 350, 820 nm were not penetrating the tissue, while the compression of tissue was observed. The particles of 95 nm size penetrated the tissue at the edge of the sample, and no compression was observed. For all particles, movement through capillary vessels was observed.

摘要

本研究探讨了在开发用于粒子引导的空间控制磁场、合成生物相容性和化学稳定性的磁性纳米粒子(MNPs)以及通过化学修饰提高其对病理细胞的特异性、开发个性化调整方法以及突出芯片上肿瘤系统的潜力等方面的问题,该系统可模拟组织环境并在可控环境中评估药物疗效和剂量。研究聚焦于两种类型的MNPs,即未包覆的磁铁矿纳米粒子(mMNPs)和羧甲基葡聚糖包覆的超顺磁性纳米粒子(CD-SPIONs),并评估了它们在微流体系统和多孔介质中的传输特性。研究表明,原始的具有双峰尺寸分布且各部分尺寸分布较窄(半径分别为23 nm和106 nm)的未包覆mMNPs在磁驱动微流体流中会发生团聚,在30分钟内形成由磁性纤维组成的稳定静止网络。研究表明,CD-SPIONs在平均孔径等于或略高于颗粒尺寸的琼脂凝胶中迁移。迁移速度与颗粒尺寸成反比。在40 T/m的磁场梯度下未观察到凝胶压缩。在脑组织中,尺寸为220、350、820 nm的颗粒未穿透组织,但观察到了组织压缩。尺寸为95 nm的颗粒在样品边缘穿透了组织,且未观察到压缩现象。对于所有颗粒,均观察到其通过毛细血管的移动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d915/11680056/ecc136380495/nanomaterials-14-02030-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验