Suppr超能文献

基于聚丙烯的聚合物锁定结扎系统的超声微成型制造工艺。

Polypropylene-Based Polymer Locking Ligation System Manufacturing by the Ultrasonic Micromolding Process.

作者信息

Elías-Grajeda Alex, Vázquez-Lepe Elisa, Siller Héctor R, Perales-Martínez Imperio Anel, Reséndiz-Hernández Emiliano, Ramírez-Herrera Claudia Angélica, Olvera-Trejo Daniel, Martínez-Romero Oscar

机构信息

Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Av. Eugenio Garza Sada Sur 2501, Monterrey 64849, N.L., Mexico.

Department of Mechanical Engineering, University of North Texas, 3940 N. Elm St., Denton, TX 76207, USA.

出版信息

Polymers (Basel). 2023 Jul 15;15(14):3049. doi: 10.3390/polym15143049.

Abstract

In recent years, there has been a growing demand for biocompatible medical devices on the microscale. However, the manufacturing of certain microfeatures has posed a significant challenge. To address this limitation, a new process called ultrasonic injection molding or ultrasonic molding (USM) has emerged as a potential solution. In this study, we focused on the production of a specific microdevice known as Hem-O-Lok, which is designed for ligation and tissue repair during laparoscopic surgery. Utilizing USM technology, we successfully manufactured the microdevice using a nonabsorbable biopolymer that offers the necessary flexibility for easy handling and use. To ensure high-quality microdevices, we extensively investigated various processing parameters such as vibration amplitude, temperature, and injection velocity. Through careful experimentation, we determined that the microdevice achieved optimal quality when manufactured under conditions of maximum vibrational amplitude and temperatures of 50 and 60 °C. This conclusion was supported by measurements of critical microfeatures. Additionally, our materials characterization efforts revealed the presence of a carbonyl (C=O) group resulting from the thermo-oxidation of air in the plasticizing chamber. This finding contributes to the enhanced thermal stability of the microdevices within a temperature range of 429-437 °C.

摘要

近年来,对微观尺度生物相容性医疗器械的需求不断增长。然而,某些微观特征的制造带来了重大挑战。为解决这一限制,一种名为超声注射成型或超声成型(USM)的新工艺已成为一种潜在的解决方案。在本研究中,我们专注于生产一种名为Hem - O - Lok的特定微型器械,其设计用于腹腔镜手术中的结扎和组织修复。利用USM技术,我们使用一种不可吸收的生物聚合物成功制造了该微型器械,这种生物聚合物提供了便于操作和使用所需的灵活性。为确保高质量的微型器械,我们广泛研究了各种加工参数,如振动幅度、温度和注射速度。通过仔细实验,我们确定在最大振动幅度以及50和60°C的温度条件下制造时,微型器械达到了最佳质量。这一结论得到了关键微观特征测量结果的支持。此外,我们的材料表征工作揭示了由于塑化室内空气的热氧化而存在羰基(C = O)基团。这一发现有助于微型器械在429 - 437°C的温度范围内提高热稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90d7/10384151/7359a7beaac7/polymers-15-03049-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验