Suppr超能文献

触觉图:一种基于神经形态视觉触觉传感的用于接触角预测的异步图神经网络。

TactiGraph: An Asynchronous Graph Neural Network for Contact Angle Prediction Using Neuromorphic Vision-Based Tactile Sensing.

作者信息

Sajwani Hussain, Ayyad Abdulla, Alkendi Yusra, Halwani Mohamad, Abdulrahman Yusra, Abusafieh Abdulqader, Zweiri Yahya

机构信息

UAE National Service & Reserve Authority, Abu Dhabi, United Arab Emirates.

Advanced Research and Innovation Center (ARIC), Khalifa University, Abu Dhabi 127788, United Arab Emirates.

出版信息

Sensors (Basel). 2023 Jul 17;23(14):6451. doi: 10.3390/s23146451.

Abstract

Vision-based tactile sensors (VBTSs) have become the de facto method for giving robots the ability to obtain tactile feedback from their environment. Unlike other solutions to tactile sensing, VBTSs offer high spatial resolution feedback without compromising on instrumentation costs or incurring additional maintenance expenses. However, conventional cameras used in VBTS have a fixed update rate and output redundant data, leading to computational overhead.In this work, we present a neuromorphic vision-based tactile sensor (N-VBTS) that employs observations from an event-based camera for contact angle prediction. In particular, we design and develop a novel graph neural network, dubbed TactiGraph, that asynchronously operates on graphs constructed from raw N-VBTS streams exploiting their spatiotemporal correlations to perform predictions. Although conventional VBTSs use an internal illumination source, TactiGraph is reported to perform efficiently in both scenarios (with and without an internal illumination source) thus further reducing instrumentation costs. Rigorous experimental results revealed that TactiGraph achieved a mean absolute error of 0.62∘ in predicting the contact angle and was faster and more efficient than both conventional VBTS and other N-VBTS, with lower instrumentation costs. Specifically, N-VBTS requires only 5.5% of the computing time needed by VBTS when both are tested on the same scenario.

摘要

基于视觉的触觉传感器(VBTS)已成为赋予机器人从其环境中获取触觉反馈能力的实际方法。与其他触觉传感解决方案不同,VBTS提供高空间分辨率反馈,同时不会增加仪器成本或产生额外维护费用。然而,VBTS中使用的传统相机具有固定的更新速率并输出冗余数据,从而导致计算开销。在这项工作中,我们提出了一种基于神经形态视觉的触觉传感器(N-VBTS),它利用基于事件的相机的观测结果进行接触角预测。具体而言,我们设计并开发了一种新颖的图神经网络,称为TactiGraph,它对从原始N-VBTS流构建的图进行异步操作,利用其时空相关性来执行预测。尽管传统的VBTS使用内部照明源,但据报道TactiGraph在两种情况下(有和没有内部照明源)都能高效运行,从而进一步降低了仪器成本。严格的实验结果表明,TactiGraph在预测接触角时的平均绝对误差为0.62°,并且比传统VBTS和其他N-VBTS更快、更高效,仪器成本更低。具体来说,当在相同场景下进行测试时,N-VBTS所需的计算时间仅为VBTS的5.5%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da86/10383597/b877f953ca7c/sensors-23-06451-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验