Suppr超能文献

神经形态计算算法与应用的机遇。

Opportunities for neuromorphic computing algorithms and applications.

作者信息

Schuman Catherine D, Kulkarni Shruti R, Parsa Maryam, Mitchell J Parker, Date Prasanna, Kay Bill

机构信息

Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA.

出版信息

Nat Comput Sci. 2022 Jan;2(1):10-19. doi: 10.1038/s43588-021-00184-y. Epub 2022 Jan 31.

Abstract

Neuromorphic computing technologies will be important for the future of computing, but much of the work in neuromorphic computing has focused on hardware development. Here, we review recent results in neuromorphic computing algorithms and applications. We highlight characteristics of neuromorphic computing technologies that make them attractive for the future of computing and we discuss opportunities for future development of algorithms and applications on these systems.

摘要

神经形态计算技术对计算的未来将很重要,但神经形态计算的许多工作都集中在硬件开发上。在这里,我们回顾了神经形态计算算法和应用的最新成果。我们强调了神经形态计算技术的特点,这些特点使其对计算的未来具有吸引力,并且我们讨论了在这些系统上算法和应用未来发展的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验