Suppr超能文献

基于图神经网络驱动的变压器的神经形态相机去噪

Neuromorphic Camera Denoising Using Graph Neural Network-Driven Transformers.

作者信息

Alkendi Yusra, Azzam Rana, Ayyad Abdulla, Javed Sajid, Seneviratne Lakmal, Zweiri Yahya

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Mar;35(3):4110-4124. doi: 10.1109/TNNLS.2022.3201830. Epub 2024 Feb 29.

Abstract

Neuromorphic vision is a bio-inspired technology that has triggered a paradigm shift in the computer vision community and is serving as a key enabler for a wide range of applications. This technology has offered significant advantages, including reduced power consumption, reduced processing needs, and communication speedups. However, neuromorphic cameras suffer from significant amounts of measurement noise. This noise deteriorates the performance of neuromorphic event-based perception and navigation algorithms. In this article, we propose a novel noise filtration algorithm to eliminate events that do not represent real log-intensity variations in the observed scene. We employ a graph neural network (GNN)-driven transformer algorithm, called GNN-Transformer, to classify every active event pixel in the raw stream into real log-intensity variation or noise. Within the GNN, a message-passing framework, referred to as EventConv, is carried out to reflect the spatiotemporal correlation among the events while preserving their asynchronous nature. We also introduce the known-object ground-truth labeling (KoGTL) approach for generating approximate ground-truth labels of event streams under various illumination conditions. KoGTL is used to generate labeled datasets, from experiments recorded in challenging lighting conditions, including moon light. These datasets are used to train and extensively test our proposed algorithm. When tested on unseen datasets, the proposed algorithm outperforms state-of-the-art methods by at least 8.8% in terms of filtration accuracy. Additional tests are also conducted on publicly available datasets (ETH Zürich Color-DAVIS346 datasets) to demonstrate the generalization capabilities of the proposed algorithm in the presence of illumination variations and different motion dynamics. Compared to state-of-the-art solutions, qualitative results verified the superior capability of the proposed algorithm to eliminate noise while preserving meaningful events in the scene.

摘要

神经形态视觉是一种受生物启发的技术,它引发了计算机视觉领域的范式转变,并成为广泛应用的关键推动因素。这项技术具有显著优势,包括降低功耗、减少处理需求和加快通信速度。然而,神经形态相机存在大量测量噪声。这种噪声会降低基于神经形态事件的感知和导航算法的性能。在本文中,我们提出了一种新颖的噪声过滤算法,以消除那些不代表观察场景中真实对数强度变化的事件。我们采用一种名为GNN-Transformer的图神经网络(GNN)驱动的变压器算法,将原始流中的每个活动事件像素分类为真实对数强度变化或噪声。在GNN内部,执行一种称为EventConv的消息传递框架,以反映事件之间的时空相关性,同时保留它们的异步性质。我们还引入了已知对象地面真值标注(KoGTL)方法,用于在各种光照条件下生成事件流的近似地面真值标签。KoGTL用于从在具有挑战性的光照条件(包括月光)下记录的实验中生成带标签的数据集。这些数据集用于训练和广泛测试我们提出的算法。在未见过的数据集上进行测试时,所提出的算法在过滤精度方面比现有方法至少高出8.8%。还在公开可用的数据集(苏黎世联邦理工学院彩色-DAVIS346数据集)上进行了额外测试,以证明所提出算法在存在光照变化和不同运动动态情况下的泛化能力。与现有解决方案相比,定性结果验证了所提出算法在消除噪声同时保留场景中有意义事件方面的卓越能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验