Suppr超能文献

基于迭代列表模式里德 - 穆勒投影检测的分组无源大规模随机接入

Iterative List Patterned Reed-Muller Projection Detection-Based Packetized Unsourced Massive Random Access.

作者信息

Xie Wenjiao, Tian Runhe, Zhang Huisheng

机构信息

School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710129, China.

Department of Architecture and Built Environment, University of Nottingham, Nottingham NG7 2RD, UK.

出版信息

Sensors (Basel). 2023 Jul 21;23(14):6596. doi: 10.3390/s23146596.

Abstract

In this paper, we consider a slot-controlled coded compressed sensing protocol for unsourced massive random access (URA) that concatenates a shared patterned Reed-Muller (PRM) inner codebook to an outer error-correction code. Due to the limitations of the geometry-based decoding algorithm in single-sequence settings and due to the message interference that may result in decreased decoding performance under multi-sequence circumstances, a list PRM projection algorithm and an iterative list PRM projection algorithm are proposed to supplant the signal detector associated with the inner PRM sequences in this paper. In detail, we first propose an enhanced path-saving algorithm, called list PRM projection detection, for use in single-user scenarios that maintains multiple candidates during the first few layers so as to remedy the risk of spreading errors. On this basis, we further propose an iterative list PRM projection algorithm for use in multi-user scenarios. The vectors for PRM codes and channel coefficients are jointly detected in an iterative manner, which offers significant improvements regarding the convergence rate for signal recovery. Furthermore, the performances of the proposed algorithms are analyzed mathematically, and we verify that the theoretical simulations are consistent with the numerical simulations. Finally, we concatenate the inner PRM codes that employ iterative list detection in two practical error-correction outer codes. According to the simulation results, we conclude that the packetized URA with the proposed iterative list projection detection works better than benchmarks in terms of the number of active users it can support in each slot and the amount of energy needed per bit to meet an expected error probability.

摘要

在本文中,我们考虑一种用于无源大规模随机接入(URA)的时隙控制编码压缩感知协议,该协议将共享的模式化里德 - 穆勒(PRM)内码本与外纠错码相结合。由于基于几何的解码算法在单序列设置中的局限性,以及由于消息干扰可能导致多序列情况下解码性能下降,本文提出了一种列表PRM投影算法和一种迭代列表PRM投影算法,以取代与内PRM序列相关联的信号检测器。具体而言,我们首先提出一种增强的路径保存算法,称为列表PRM投影检测,用于单用户场景,该算法在前几层中保留多个候选值,以弥补错误传播的风险。在此基础上,我们进一步提出一种用于多用户场景的迭代列表PRM投影算法。以迭代方式联合检测PRM码向量和信道系数,这在信号恢复的收敛速度方面有显著提高。此外,对所提出算法的性能进行了数学分析,并且我们验证了理论模拟与数值模拟是一致的。最后,我们将采用迭代列表检测的内PRM码与两种实际的纠错外码相结合。根据模拟结果,我们得出结论,在所提出的迭代列表投影检测下的分组URA在每个时隙中能够支持的活跃用户数量以及满足预期错误概率所需的每比特能量方面,比基准方案表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed78/10383349/556e037ce943/sensors-23-06596-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验