Division of Mechanical Engineering, (National) Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
Division of Biomedical Engineering, Konkuk University, Chungju 27478, Republic of Korea.
Sensors (Basel). 2023 Jul 24;23(14):6638. doi: 10.3390/s23146638.
Cueing and feedback training can be effective in maintaining or improving gait in individuals with Parkinson's disease. We previously designed a rehabilitation assist device that can detect and classify a user's gait at only the swing phase of the gait cycle, for the ease of data processing. In this study, we analyzed the impact of various factors in a gait detection algorithm on the gait detection and classification rate (GDCR). We collected acceleration and angular velocity data from 25 participants (1 male and 24 females with an average age of 62 ± 6 years) using our device and analyzed the data using statistical methods. Based on these results, we developed an adaptive GDCR control algorithm using several equations and functions. We tested the algorithm under various virtual exercise scenarios using two control methods, based on acceleration and angular velocity, and found that the acceleration threshold was more effective in controlling the GDCR (average Spearman correlation -0.9996, < 0.001) than the gyroscopic threshold. Our adaptive control algorithm was more effective in maintaining the target GDCR than the other algorithms ( < 0.001) with an average error of 0.10, while other tested methods showed average errors of 0.16 and 0.28. This algorithm has good scalability and can be adapted for future gait detection and classification applications.
提示和反馈训练可以有效地维持或改善帕金森病患者的步态。我们之前设计了一种康复辅助设备,它可以在步态周期的摆动阶段检测和分类用户的步态,便于数据处理。在这项研究中,我们分析了步态检测算法中各种因素对步态检测和分类率(GDCR)的影响。我们使用我们的设备从 25 名参与者(1 名男性和 24 名女性,平均年龄 62 ± 6 岁)中收集了加速度和角速度数据,并使用统计方法分析了这些数据。基于这些结果,我们使用几个方程和函数开发了一种自适应 GDCR 控制算法。我们使用两种控制方法(基于加速度和角速度)在各种虚拟运动场景下测试了该算法,发现加速度阈值比陀螺仪阈值更有效地控制 GDCR(平均 Spearman 相关性-0.9996, < 0.001)。与其他算法( < 0.001)相比,我们的自适应控制算法在维持目标 GDCR 方面更有效,平均误差为 0.10,而其他测试方法的平均误差分别为 0.16 和 0.28。该算法具有良好的可扩展性,可适用于未来的步态检测和分类应用。