Suppr超能文献

基于惯性测量单元的可穿戴设备增强反馈训练中步态障碍检测与分类方法。

Gait Disorder Detection and Classification Method Using Inertia Measurement Unit for Augmented Feedback Training in Wearable Devices.

机构信息

Division of Mechanical Engineering, (National) Korea Maritime and Ocean University, Busan 49112, Korea.

Division of Biomedical Engineering, Konkuk University, Chungju 27478, Korea.

出版信息

Sensors (Basel). 2021 Nov 18;21(22):7676. doi: 10.3390/s21227676.

Abstract

Parkinson's disease (PD) is a common neurodegenerative disease, one of the symptoms of which is a gait disorder, which decreases gait speed and cadence. Recently, augmented feedback training has been considered to achieve effective physical rehabilitation. Therefore, we have devised a numerical modeling process and algorithm for gait detection and classification (GDC) that actively utilizes augmented feedback training. The numerical model converted each joint angle into a magnitude of acceleration (MoA) and a Z-axis angular velocity (ZAV) parameter. Subsequently, we confirmed the validity of both the GDC numerical modeling and algorithm. As a result, a higher gait detection and classification rate (GDCR) could be observed at a higher gait speed and lower acceleration threshold (AT) and gyroscopic threshold (GT). However, the pattern of the GDCR was ambiguous if the patient was affected by a gait disorder compared to a normal user. To utilize the relationships between the GDCR, AT, GT, and gait speed, we controlled the GDCR by using AT and GT as inputs, which we found to be a reasonable methodology. Moreover, the GDC algorithm could distinguish between normal people and people who suffered from gait disorders. Consequently, the GDC method could be used for rehabilitation and gait evaluation.

摘要

帕金森病(PD)是一种常见的神经退行性疾病,其症状之一是步态障碍,表现为步态速度和步频降低。最近,增强反馈训练被认为是实现有效身体康复的一种方法。因此,我们设计了一种步态检测和分类(GDC)的数值建模过程和算法,该算法积极利用增强反馈训练。数值模型将每个关节角度转换为加速度幅度(MoA)和 Z 轴角速度(ZAV)参数。随后,我们验证了 GDC 数值建模和算法的有效性。结果表明,在较高的步态速度和较低的加速度阈值(AT)和陀螺仪阈值(GT)下,可观察到更高的步态检测和分类率(GDCR)。然而,如果患者患有步态障碍,与正常使用者相比,GDCR 的模式就不那么明显。为了利用 GDCR、AT、GT 和步态速度之间的关系,我们将 GDCR 控制为 AT 和 GT 的输入,我们发现这是一种合理的方法。此外,GDC 算法可以区分正常人(normal people)和步态障碍患者。因此,GDC 方法可用于康复和步态评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a785/8619777/c7a5753177bf/sensors-21-07676-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验