Suppr超能文献

用于日常生活场景中步态监测的惯性测量单元(IMU)步态分析算法的验证

Validation of an IMU Gait Analysis Algorithm for Gait Monitoring in Daily Life Situations.

作者信息

Zhou Lin, Tunca Can, Fischer Eric, Brahms Clemens Markus, Ersoy Cem, Granacher Urs, Arnrich Bert

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4229-4232. doi: 10.1109/EMBC44109.2020.9176827.

Abstract

Gait is an essential function for humans, and gait patterns in daily life provide meaningful information about a person's cognitive and physical health conditions. Inertial measurement units (IMUs) have emerged as a promising tool for low-cost, unobtrusive gait analysis. However, large varieties of IMU gait analysis algorithms and the lack of consensus for their validation make it difficult for researchers to assess the reliability of the algorithms for specific use cases. In daily life, individuals adapt their gait patterns in response to changes in the environment, making it necessary for IMU gait analysis algorithms to provide accurate measurements despite these gait variations. In this paper, we reviewed common types of IMU gait analysis algorithms and appropriate analysis methods to evaluate the accuracy of gait parameters extracted from IMU measurements. We then evaluated stride lengths and stride times calculated from a comprehensive double integration based IMU gait analysis algorithm using an optoelectric walkway as gold standard. In total, 729 strides from five healthy subjects and three different walking patterns were analyzed. Correlation analyses and Bland-Altman plots showed that this method is accurate and robust against large variations in walking patterns (stride length: correlation coefficient (r) was 0.99, root mean square error (RMSE) was 3% and average limits of agreement (LoA) was 6%; stride time: r was 0.95, RMSE was 4% and average LoA was 7%), making it suitable for gait evaluation in daily life situations. Due to the small sample size, our preliminary findings should be verified in future studies.

摘要

步态是人类的一项基本功能,日常生活中的步态模式能提供有关一个人的认知和身体健康状况的有意义信息。惯性测量单元(IMU)已成为一种有前景的工具,可用于低成本、非侵入式的步态分析。然而,大量的IMU步态分析算法以及缺乏对其验证的共识,使得研究人员难以评估算法在特定用例中的可靠性。在日常生活中,个体根据环境变化调整其步态模式,这使得IMU步态分析算法即使在这些步态变化的情况下也必须提供准确的测量。在本文中,我们回顾了IMU步态分析算法的常见类型以及评估从IMU测量中提取的步态参数准确性的适当分析方法。然后,我们以光电步道作为金标准,评估了基于综合双积分的IMU步态分析算法计算出的步长和步时。总共分析了来自五名健康受试者的729步以及三种不同的行走模式。相关性分析和布兰德-奥特曼图表明,该方法对于行走模式的大变化是准确且稳健的(步长:相关系数(r)为0.99,均方根误差(RMSE)为3%,平均一致性界限(LoA)为6%;步时:r为0.95,RMSE为4%,平均LoA为7%),使其适用于日常生活场景中的步态评估。由于样本量较小,我们的初步发现应在未来研究中得到验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验