Suppr超能文献

混合物的自动核磁共振指纹识别

Automated nuclear magnetic resonance fingerprinting of mixtures.

作者信息

Specht Thomas, Arweiler Justus, Stüber Johannes, Münnemann Kerstin, Hasse Hans, Jirasek Fabian

机构信息

Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Kaiserslautern, Germany.

出版信息

Magn Reson Chem. 2024 Apr;62(4):286-297. doi: 10.1002/mrc.5381. Epub 2023 Jul 29.

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for qualitative and quantitative analysis. However, for complex mixtures, determining the speciation from NMR spectra can be tedious and sometimes even unfeasible. On the other hand, identifying and quantifying structural groups in a mixture from NMR spectra is much easier than doing the same for components. We call this group-based approach "NMR fingerprinting." In this work, we show that NMR fingerprinting can even be performed in an automated way, without expert knowledge, based only on standard NMR spectra, namely, C, H, and C DEPT NMR spectra. Our approach is based on the machine-learning method of support vector classification (SVC), which was trained here on thousands of labeled pure-component NMR spectra from open-source data banks. We demonstrate the applicability of the automated NMR fingerprinting using test mixtures, of which spectra were taken using a simple benchtop NMR spectrometer. The results from the NMR fingerprinting agree remarkably well with the ground truth, which was known from the gravimetric preparation of the samples. To facilitate the application of the method, we provide an interactive website (https://nmr-fingerprinting.de), where spectral information can be uploaded and which returns the NMR fingerprint. The NMR fingerprinting can be used in many ways, for example, for process monitoring or thermodynamic modeling using group-contribution methods-or simply as a first step in species analysis.

摘要

核磁共振(NMR)光谱法是一种用于定性和定量分析的强大工具。然而,对于复杂混合物,从NMR光谱确定物种形态可能很繁琐,有时甚至不可行。另一方面,从NMR光谱识别和量化混合物中的结构基团比分析组分要容易得多。我们将这种基于基团的方法称为“NMR指纹识别”。在这项工作中,我们表明NMR指纹识别甚至可以以自动化方式进行,无需专业知识,仅基于标准NMR光谱,即碳、氢和碳DEPT NMR光谱。我们的方法基于支持向量分类(SVC)的机器学习方法,该方法在此处使用来自开源数据库的数千个标记纯组分NMR光谱进行训练。我们使用测试混合物证明了自动化NMR指纹识别的适用性,这些混合物的光谱是使用简单的台式NMR光谱仪采集的。NMR指纹识别的结果与已知的样品重量法制备的真实情况非常吻合。为了便于该方法的应用,我们提供了一个交互式网站(https://nmr-fingerprinting.de), 可以上传光谱信息并返回NMR指纹。NMR指纹识别有多种用途,例如,用于过程监测或使用基团贡献法进行热力学建模,或者简单地作为物种分析的第一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验