Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
Department of Automation, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China.
Cell Syst. 2023 Aug 16;14(8):692-705.e6. doi: 10.1016/j.cels.2023.05.005. Epub 2023 Jul 28.
Protein-ligand interactions are essential for cellular activities and drug discovery processes. Appropriately and effectively representing protein features is of vital importance for developing computational approaches, especially data-driven methods, for predicting protein-ligand interactions. However, existing approaches may not fully investigate the features of the ligand-occupying regions in the protein pockets. Here, we design a structure-based protein representation method, named PocketAnchor, for capturing the local environmental and spatial features of protein pockets to facilitate protein-ligand interaction-related learning tasks. We define "anchors" as probe points reaching into the cavities and those located near the surface of proteins, and we design a specific message passing strategy for gathering local information from the atoms and surface neighboring these anchors. Comprehensive evaluation of our method demonstrated its successful applications in pocket detection and binding affinity prediction, which indicated that our anchor-based approach can provide effective protein feature representations for improving the prediction of protein-ligand interactions.
蛋白质-配体相互作用对于细胞活动和药物发现过程至关重要。适当有效地表示蛋白质特征对于开发计算方法,特别是数据驱动的方法,用于预测蛋白质-配体相互作用至关重要。然而,现有的方法可能无法充分研究蛋白质口袋中配体占据区域的特征。在这里,我们设计了一种基于结构的蛋白质表示方法,称为 PocketAnchor,用于捕获蛋白质口袋的局部环境和空间特征,以促进与蛋白质-配体相互作用相关的学习任务。我们将“锚点”定义为探针点,这些探针点可以进入腔体内,也可以位于蛋白质表面附近,我们设计了一种特定的消息传递策略,用于从原子和表面的邻近区域收集局部信息。我们的方法进行了全面评估,结果表明它在口袋检测和结合亲和力预测方面的成功应用,这表明我们的基于锚点的方法可以提供有效的蛋白质特征表示,从而提高蛋白质-配体相互作用的预测能力。