Suppr超能文献

DeepTGIN:一种使用Transformer和图同构网络进行蛋白质-配体结合亲和力预测的新型混合多模态方法。

DeepTGIN: a novel hybrid multimodal approach using transformers and graph isomorphism networks for protein-ligand binding affinity prediction.

作者信息

Wang Guishen, Zhang Hangchen, Shao Mengting, Feng Yuncong, Cao Chen, Hu Xiaowen

机构信息

College of Computer Science and Engineering, Changchun University of Technology, North Yunda Street No. 3000, Changchun, 130012, Jilin, China.

School of Life Sciences, Jilin University, Qianjin Street No. 2055, Changchun, 130000, Jilin, China.

出版信息

J Cheminform. 2024 Dec 29;16(1):147. doi: 10.1186/s13321-024-00938-6.

Abstract

Predicting protein-ligand binding affinity is essential for understanding protein-ligand interactions and advancing drug discovery. Recent research has demonstrated the advantages of sequence-based models and graph-based models. In this study, we present a novel hybrid multimodal approach, DeepTGIN, which integrates transformers and graph isomorphism networks to predict protein-ligand binding affinity. DeepTGIN is designed to learn sequence and graph features efficiently. The DeepTGIN model comprises three modules: the data representation module, the encoder module, and the prediction module. The transformer encoder learns sequential features from proteins and protein pockets separately, while the graph isomorphism network extracts graph features from the ligands. To evaluate the performance of DeepTGIN, we compared it with state-of-the-art models using the PDBbind 2016 core set and PDBbind 2013 core set. DeepTGIN outperforms these models in terms of R, RMSE, MAE, SD, and CI metrics. Ablation studies further demonstrate the effectiveness of the ligand features and the encoder module. The code is available at: https://github.com/zhc-moushang/DeepTGIN . SCIENTIFIC CONTRIBUTION: DeepTGIN is a novel hybrid multimodal deep learning model for predict protein-ligand binding affinity. The model combines the Transformer encoder to extract sequence features from protein and protein pocket, while integrating graph isomorphism networks to capture features from the ligand. This model addresses the limitations of existing methods in exploring protein pocket and ligand features.

摘要

预测蛋白质-配体结合亲和力对于理解蛋白质-配体相互作用和推进药物发现至关重要。最近的研究已经证明了基于序列的模型和基于图的模型的优势。在本研究中,我们提出了一种新颖的混合多模态方法——DeepTGIN,它整合了变换器和图同构网络来预测蛋白质-配体结合亲和力。DeepTGIN旨在高效地学习序列和图特征。DeepTGIN模型由三个模块组成:数据表示模块、编码器模块和预测模块。变换器编码器分别从蛋白质和蛋白质口袋中学习序列特征,而图同构网络从配体中提取图特征。为了评估DeepTGIN的性能,我们使用PDBbind 2016核心集和PDBbind 2013核心集将其与最先进的模型进行了比较。在R、RMSE、MAE、SD和CI指标方面,DeepTGIN优于这些模型。消融研究进一步证明了配体特征和编码器模块的有效性。代码可在以下网址获取:https://github.com/zhc-moushang/DeepTGIN 。科学贡献:DeepTGIN是一种用于预测蛋白质-配体结合亲和力的新颖混合多模态深度学习模型。该模型结合变换器编码器从蛋白质和蛋白质口袋中提取序列特征,同时整合图同构网络以从配体中捕获特征。该模型解决了现有方法在探索蛋白质口袋和配体特征方面的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd5/11684089/449618eee8eb/13321_2024_938_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验