Pérez-Obiol A, Romero A M, Menéndez J, Rios A, García-Sáez A, Juliá-Díaz B
Barcelona Supercomputing Center, 08034, Barcelona, Spain.
Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028, Barcelona, Spain.
Sci Rep. 2023 Jul 29;13(1):12291. doi: 10.1038/s41598-023-39263-7.
The nuclear shell model is one of the prime many-body methods to study the structure of atomic nuclei, but it is hampered by an exponential scaling on the basis size as the number of particles increases. We present a shell-model quantum circuit design strategy to find nuclear ground states by exploiting an adaptive variational quantum eigensolver algorithm. Our circuit implementation is in excellent agreement with classical shell-model simulations for a dozen of light and medium-mass nuclei, including neon and calcium isotopes. We quantify the circuit depth, width and number of gates to encode realistic shell-model wavefunctions. Our strategy also addresses explicitly energy measurements and the required number of circuits to perform them. Our simulated circuits approach the benchmark results exponentially with a polynomial scaling in quantum resources for each nucleus. This work paves the way for quantum computing shell-model studies across the nuclear chart and our quantum resource quantification may be used in configuration-interaction calculations of other fermionic systems.
核壳模型是研究原子核结构的主要多体方法之一,但随着粒子数增加,它受到基矢大小指数缩放的限制。我们提出一种壳模型量子电路设计策略,通过利用自适应变分量子本征求解器算法来寻找原子核基态。对于包括氖和钙同位素在内的十几种轻核和中等质量核,我们的电路实现与经典壳模型模拟结果高度吻合。我们量化了编码现实壳模型波函数所需的电路深度、宽度和门数量。我们的策略还明确解决了能量测量以及执行这些测量所需的电路数量问题。我们模拟的电路以指数方式接近基准结果,且对每个原子核而言量子资源呈多项式缩放。这项工作为跨越核素图的量子计算壳模型研究铺平了道路,我们的量子资源量化可用于其他费米子系统的组态相互作用计算。