Suppr超能文献

用于抑郁症分类的神经生理生物标志物:利用微状态k-聚体和词袋模型。

Neurophysiological biomarkers for depression classification: Utilizing microstate k-mers and a bag-of-words model.

作者信息

Zhou Dong-Dong, Peng Xin-Yu, Zhao Lin, Ma Ling-Li, Hu Jin-Hui, Jiang Zheng-Hao, He Xiao-Qing, Wang Wo, Chen Ran, Kuang Li

机构信息

Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China.

Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

J Psychiatr Res. 2023 Sep;165:197-204. doi: 10.1016/j.jpsychires.2023.07.021. Epub 2023 Jul 21.

Abstract

Microstates are analogous to characters in a language, and short fragments consisting of several microstates (k-mers) are analogous to words. We aimed to investigate whether microstate k-mers could be used as neurophysiological biomarkers to differentiate between depressed patients and normal controls. We utilized a bag-of-words model to process microstate sequences, using k-mers with a k range of 1-10 as terms, and the term frequency (TF) with or without inverse-document-frequency (IDF) as features. We performed nested cross-validation on Dataset 1 (27 patients and 26 controls) and Dataset 2 (34 patients and 30 controls) separately and then trained on one dataset and tested on the other. The best area under the curve (AUC) of 81.5% was achieved for the model with L1 regularization using the TF of 4-mers as features in Dataset 1, and the best AUC of 88.9% was achieved for the model with L1 regularization using the TF of 9-mers as features in Dataset 2. When Dataset 1 was used as the training set, the best AUC of predicting Dataset 2 was 74.1% for the model with L2 regularization using the TF-IDF of 9-mers as features, while the best AUC of predicting Dataset 1 was 70.2% for the model with L1 regularization using the TF of 8-mers as features. Our study provided novel insights into the potential of microstate k-mers as neurophysiological biomarkers for individual-level classification of depression. These may facilitate further exploration of microstate sequences using natural language processing techniques.

摘要

微状态类似于一种语言中的字符,由几个微状态组成的短片段(k-mer)类似于单词。我们旨在研究微状态k-mer是否可以用作神经生理学生物标志物,以区分抑郁症患者和正常对照。我们利用词袋模型来处理微状态序列,使用k范围为1-10的k-mer作为词项,并使用带有或不带有逆文档频率(IDF)的词频(TF)作为特征。我们分别在数据集1(27名患者和26名对照)和数据集2(34名患者和30名对照)上进行嵌套交叉验证,然后在一个数据集上进行训练,并在另一个数据集上进行测试。在数据集1中,使用4-mer的TF作为特征的L1正则化模型实现了81.5%的最佳曲线下面积(AUC),在数据集2中,使用9-mer的TF作为特征的L1正则化模型实现了88.9%的最佳AUC。当将数据集1用作训练集时,使用9-mer的TF-IDF作为特征的L2正则化模型预测数据集2的最佳AUC为74.1%,而使用8-mer的TF作为特征的L1正则化模型预测数据集1的最佳AUC为70.2%。我们的研究为微状态k-mer作为抑郁症个体水平分类的神经生理学生物标志物的潜力提供了新的见解。这些可能有助于使用自然语言处理技术进一步探索微状态序列。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验