Suppr超能文献

揭示焦虑和抑郁症状的频率特异性微状态相关因素。

Unveiling Frequency-Specific Microstate Correlates of Anxiety and Depression Symptoms.

机构信息

School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.

Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China.

出版信息

Brain Topogr. 2024 Nov 5;38(1):12. doi: 10.1007/s10548-024-01082-y.

Abstract

Electroencephalography (EEG) microstates are canonical voltage topographies that reflect the temporal dynamics of brain networks on a millisecond time scale. Abnormalities in broadband microstate parameters have been observed in subjects with psychiatric symptoms, indicating their potential as clinical biomarkers. Considering distinct information provided by specific frequency bands of EEG, we hypothesized that microstates in decomposed frequency bands could provide a more detailed depiction of the underlying neuropathological mechanism. In this study, with a large open access resting-state dataset (n = 203), we examined the properties of frequency-specific microstates and their relationship with anxiety and depression symptoms. We conducted clustering on EEG topographies in decomposed frequency bands (delta, theta, alpha and beta), and determined the number of clusters with a meta-criterion. Microstate parameters, including global explained variance (GEV), duration, coverage, occurrence and transition probability, were calculated for eyes-open and eyes-closed states, respectively. Their ability to predict the severity of depression and anxiety symptoms were systematically identified by correlation, regression and classification analyses. Distinct microstate patterns were observed across different frequency bands. Microstate parameters in the alpha band held the best predictive power for emotional symptoms. Microstates B (GEV, coverage) and parieto-central maximum microstate E (coverage, occurrence, transitions from B to E) in the alpha band exhibited significant correlations with depression and anxiety, respectively. Microstate parameters of the alpha band achieved predictive R-square of 0.100 for anxiety scores, which is much higher than those of broadband (R-square = -0.026, p < 0.01). Similar results were found in classification of participants with high and low anxiety symptom scores (68% accuracy in alpha vs. 52% in broadband). These results suggested the value of frequency-specific microstates in predicting emotional symptoms.

摘要

脑电微状态是反映脑网络在毫秒时间尺度上的时间动态的典型电压拓扑。在有精神症状的受试者中观察到宽带微状态参数的异常,表明它们可能成为临床生物标志物。考虑到 EEG 不同频带提供的独特信息,我们假设分解频带中的微状态可以更详细地描述潜在的神经病理学机制。在这项研究中,我们使用了一个大型开放访问的静息态数据集(n=203),研究了特定频带的微状态的特性及其与焦虑和抑郁症状的关系。我们对分解频带(δ、θ、α和β)中的 EEG 地形图进行聚类,并使用元标准确定聚类的数量。为睁眼和闭眼状态分别计算微状态参数,包括全局解释方差(GEV)、持续时间、覆盖度、出现和转移概率。通过相关、回归和分类分析系统地确定它们预测抑郁和焦虑症状严重程度的能力。在不同频带中观察到不同的微状态模式。α 频带中的微状态参数对情绪症状具有最佳的预测能力。α 频带中的微状态 B(GEV、覆盖度)和顶中央最大微状态 E(覆盖度、出现、从 B 到 E 的转移)与抑郁和焦虑分别显著相关。α 频带的微状态参数对焦虑评分的预测 R 平方达到 0.100,远高于宽带(R 平方=-0.026,p<0.01)。在对高焦虑和低焦虑症状评分的参与者进行分类时也发现了类似的结果(α 频带的准确率为 68%,而宽带的准确率为 52%)。这些结果表明,频带特异性微状态在预测情绪症状方面具有价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验