文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纹理和形状聚焦的双流注意神经网络,用于超声图像中甲状腺结节的良恶性诊断。

TS-DSANN: Texture and shape focused dual-stream attention neural network for benign-malignant diagnosis of thyroid nodules in ultrasound images.

机构信息

School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, PR China; School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, PR China.

School of Information and Electrical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.

出版信息

Med Image Anal. 2023 Oct;89:102905. doi: 10.1016/j.media.2023.102905. Epub 2023 Jul 13.


DOI:10.1016/j.media.2023.102905
PMID:37517286
Abstract

Recently, accurate diagnosis of thyroid nodules has played a critical role in precision medicine and healthcare system management. Due to complicated changes in ultrasound features of texture, and similar visual appearance of benign-malignant nodules, the identification of cancerous thyroid lesions from a given ultrasound image still faces challenges for even experienced radiologists. Learning-based computer-aided diagnosis (CAD) systems have accordingly attracted more and more attention recently. However, little research is committed to developing a deep learning-based CAD system that has greater conformity with radiologists' diagnostic decision-making. In this study, we devise a texture and shape focused dual-stream attention neural network, dubbed TS-DSANN. Specifically, in the texture focused stream, we utilize the ImageNet pre-trained ResNet34 to guide the network to recognize texture-related nodule attributes. Meanwhile, in the shape focused stream, in addition to using ResNet34 backbone, jointly learning from scratch with the contour obtained by contour detection module to enhance the extraction of shape features. Afterward, we employ a concatenation operation to aggregate the abovementioned two stream networks for capturing richer and more representative features. Finally, we further utilize an online class activation mapping mechanism to assist the dual-stream network in generating a localization heatmap to obtain more visualization attention to the nodule from the whole image, and supervise classifier's attention in decision-making. Experimental results conducted on the two-center thyroid nodule ultrasound datasets verify that our proposed method has improved the classification performance, superior to the state-of-the-art methods.

摘要

最近,甲状腺结节的准确诊断在精准医学和医疗保健系统管理中起着至关重要的作用。由于纹理的超声特征变化复杂,以及良性和恶性结节的外观相似,即使是经验丰富的放射科医生,从给定的超声图像中识别癌症性甲状腺病变仍然具有挑战性。基于学习的计算机辅助诊断(CAD)系统因此最近引起了越来越多的关注。然而,很少有研究致力于开发与放射科医生的诊断决策更一致的基于深度学习的 CAD 系统。在本研究中,我们设计了一种专注于纹理和形状的双流注意力神经网络,称为 TS-DSANN。具体来说,在纹理关注流中,我们利用 ImageNet 预训练的 ResNet34 引导网络识别与纹理相关的结节属性。同时,在形状关注流中,除了使用 ResNet34 骨干网络外,我们还与轮廓检测模块获得的轮廓一起从头开始共同学习,以增强形状特征的提取。然后,我们采用拼接操作将上述两个流网络进行聚合,以捕获更丰富和更具代表性的特征。最后,我们进一步利用在线类激活映射机制来辅助双流网络生成定位热图,从而从整个图像中获得对结节的更多可视化关注,并在决策中监督分类器的关注。在两个中心甲状腺结节超声数据集上进行的实验结果验证了我们提出的方法提高了分类性能,优于最先进的方法。

相似文献

[1]
TS-DSANN: Texture and shape focused dual-stream attention neural network for benign-malignant diagnosis of thyroid nodules in ultrasound images.

Med Image Anal. 2023-10

[2]
Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks.

Med Image Anal. 2019-9-5

[3]
Shape-margin knowledge augmented network for thyroid nodule segmentation and diagnosis.

Comput Methods Programs Biomed. 2024-2

[4]
TNSNet: Thyroid nodule segmentation in ultrasound imaging using soft shape supervision.

Comput Methods Programs Biomed. 2022-3

[5]
Evaluation of a deep learning-based computer-aided diagnosis system for distinguishing benign from malignant thyroid nodules in ultrasound images.

Med Phys. 2020-9

[6]
SK-Unet++: An improved Unet++ network with adaptive receptive fields for automatic segmentation of ultrasound thyroid nodule images.

Med Phys. 2024-3

[7]
Automatic diagnosis for thyroid nodules in ultrasound images by deep neural networks.

Med Image Anal. 2020-4

[8]
Cascade marker removal algorithm for thyroid ultrasound images.

Med Biol Eng Comput. 2020-11

[9]
Patch-based classification of thyroid nodules in ultrasound images using direction independent features extracted by two-threshold binary decomposition.

Comput Med Imaging Graph. 2018-10-31

[10]
Visual Interpretability in Computer-Assisted Diagnosis of Thyroid Nodules Using Ultrasound Images.

Med Sci Monit. 2020-8-15

引用本文的文献

[1]
LGF-Net: A multi-scale feature fusion network for thyroid nodule ultrasound image classification.

J Appl Clin Med Phys. 2025-8

[2]
An ultrasound image segmentation method for thyroid nodules based on dual-path attention mechanism-enhanced UNet+.

BMC Med Imaging. 2024-12-18

[3]
TIRADS-based artificial intelligence systems for ultrasound images of thyroid nodules: protocol for a systematic review.

J Ultrasound. 2025-3

[4]
Can incorporating image resolution into neural networks improve kidney tumor classification performance in ultrasound images?

Med Biol Eng Comput. 2024-8-31

[5]
Artificial intelligence assisted diagnosis of early tc markers and its application.

Discov Oncol. 2024-5-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索