Suppr超能文献

一种用于元素尺度正渗透(FO)-反渗透(RO)混合系统的高效数据驱动脱盐方法。

An efficient data-driven desalination approach for the element-scale forward osmosis (FO)-reverse osmosis (RO) hybrid systems.

作者信息

Im Sung-Ju, Viet Nguyen Duc, Lee Byung-Tae, Jang Am

机构信息

Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States.

Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon, 21985, Republic of Korea.

出版信息

Environ Res. 2023 Nov 15;237(Pt 1):116786. doi: 10.1016/j.envres.2023.116786. Epub 2023 Jul 28.

Abstract

Freshwater shortages are a consequence of the rapid increase in population, and desalination of saltwater has gained popularity as an alternative water treatment method in recent years. To date, the forward osmosis-reverse osmosis (FO-RO) hybrid technology has been proposed as a low-energy and environmentally friendly next-generation seawater desalination process. Scaling up the FO-RO hybrid system significantly affects the success of a commercial-scale process. However, neither the ideal structure nor the membrane components for plate-and-frame FO (PFFO) and spiral-wound FO (SWFO) are known. This study aims to explore and optimize the performance of SWFO-RO and PFFO-RO hybrid element-scale systems in the desalination of seawater. The results showed that both hybrid systems could yield high water recovery under optimal operating conditions. The prediction of the system performance (water flux and reverse salt flux) by artificial intelligence was considerably better (R > 0.99, root mean square error <5%) than that of conventional mass balance models. A Markov-based decision tree successfully classified the water flux level in hybrid systems. An optimal set of operational conditions for each membrane system was proposed. For example, in RO, a combination of the feed solution (FS) flow rate (≥17.5 L/min), FS concentration (<17,500 ppm), and operation pressure (<35 bar) would result in high water permeability (>40 LMH). In addition, five SWFO elements and four PFFO elements should be the optimal numbers of FO membranes in the hybrid FO-RO system for effective seawater desalination, especially for long-term operation.

摘要

淡水短缺是人口快速增长的结果,近年来,海水淡化作为一种替代水处理方法越来越受欢迎。迄今为止,正渗透-反渗透(FO-RO)混合技术已被提议作为一种低能耗且环保的下一代海水淡化工艺。扩大FO-RO混合系统规模会显著影响商业规模工艺的成功。然而,平板式FO(PFFO)和卷式FO(SWFO)的理想结构和膜组件都尚不明确。本研究旨在探索并优化SWFO-RO和PFFO-RO混合元件规模系统在海水淡化中的性能。结果表明,在最佳运行条件下,两种混合系统都能实现高水回收率。人工智能对系统性能(水通量和反向盐通量)的预测比传统质量平衡模型要好得多(R>0.99,均方根误差<5%)。基于马尔可夫的决策树成功地对混合系统中的水通量水平进行了分类。针对每个膜系统提出了一组最佳运行条件。例如,在RO中,进料溶液(FS)流速(≥17.5 L/min)、FS浓度(<17,500 ppm)和运行压力(<35 bar)的组合将导致高透水率(>40 LMH)。此外,对于有效的海水淡化,尤其是长期运行,五个SWFO元件和四个PFFO元件应是混合FO-RO系统中FO膜的最佳数量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验