Graduate and Postgraduate Department, Impacta School of Technology, São Paulo, Brazil.
Screening and Prevention of Preterm Birth Sector, Discipline of Fetal Medicine, Department of Obstetrics, Paulista School of Medicine - Federal University of Sao Paulo (EPM-UNIFESP), São Paulo, Brazil.
J Matern Fetal Neonatal Med. 2023 Dec;36(2):2241100. doi: 10.1080/14767058.2023.2241100.
The objective of this study is to create a new screening for spontaneous preterm birth (sPTB) based on artificial intelligence (AI).
This study included 524 singleton pregnancies from 18th to 24th-week gestation after transvaginal ultrasound cervical length (CL) analyzes for screening sPTB < 35 weeks. AI model was created based on the stacking-based ensemble learning method (SBELM) by the neural network, gathering CL < 25 mm, multivariate unadjusted logistic regression (LR), and the best AI algorithm. Receiver Operating Characteristics (ROC) curve to predict sPTB < 35 weeks and area under the curve (AUC), sensitivity, specificity, accuracy, predictive positive and negative values were performed to evaluate CL < 25 mm, LR, the best algorithms of AI and SBELM.
The most relevant variables presented by LR were cervical funneling, index straight CL/internal angle inside the cervix (≤ 0.200), previous PTB < 37 weeks, previous curettage, no antibiotic treatment during pregnancy, and weight (≤ 58 kg), no smoking, and CL < 30.9 mm. Fixing 10% of false positive rate, CL < 25 mm and SBELM present, respectively: AUC of 0.318 and 0.808; sensitivity of 33.3% and 47,3%; specificity of 91.8 and 92.8%; positive predictive value of 23.1 and 32.7%; negative predictive value of 94.9 and 96.0%. This machine learning presented high statistical significance when compared to CL < 25 mm after T-test ( < .00001).
AI applied to clinical and ultrasonographic variables could be a viable option for screening of sPTB < 35 weeks, improving the performance of short cervix, with a low false-positive rate.
本研究旨在基于人工智能(AI)创建一种新的自发性早产(sPTB)筛查方法。
本研究纳入了 524 例经阴道超声宫颈长度(CL)分析在 18 至 24 孕周的单胎妊娠,用于筛查<35 周的 sPTB。AI 模型是基于神经网络的堆叠式集成学习方法(SBELM)创建的,纳入 CL<25mm、多变量未校正逻辑回归(LR)和最佳 AI 算法。通过接受者操作特征(ROC)曲线预测<35 周的 sPTB,并计算曲线下面积(AUC)、敏感度、特异度、准确度、阳性预测值和阴性预测值,以评估 CL<25mm、LR、最佳 AI 算法和 SBELM。
LR 呈现的最相关变量为宫颈漏斗形成、指数直 CL/宫颈内口内角(≤0.200)、<37 周的既往早产、既往刮宫术、孕期无抗生素治疗、体重(≤58kg)、不吸烟和 CL<30.9mm。固定 10%的假阳性率,CL<25mm 和 SBELM 分别为:AUC 为 0.318 和 0.808;敏感度为 33.3%和 47.3%;特异度为 91.8%和 92.8%;阳性预测值为 23.1%和 32.7%;阴性预测值为 94.9%和 96.0%。与 T 检验(<0.00001)后 CL<25mm 相比,该机器学习具有统计学意义。
将 AI 应用于临床和超声变量可能是筛查<35 周 sPTB 的一种可行选择,可提高短颈的性能,且假阳性率低。