Suppr超能文献

基于人工智能的早产筛查新模型。

A new model based on artificial intelligence to screening preterm birth.

机构信息

Graduate and Postgraduate Department, Impacta School of Technology, São Paulo, Brazil.

Screening and Prevention of Preterm Birth Sector, Discipline of Fetal Medicine, Department of Obstetrics, Paulista School of Medicine - Federal University of Sao Paulo (EPM-UNIFESP), São Paulo, Brazil.

出版信息

J Matern Fetal Neonatal Med. 2023 Dec;36(2):2241100. doi: 10.1080/14767058.2023.2241100.

Abstract

OBJECTIVE

The objective of this study is to create a new screening for spontaneous preterm birth (sPTB) based on artificial intelligence (AI).

METHODS

This study included 524 singleton pregnancies from 18th to 24th-week gestation after transvaginal ultrasound cervical length (CL) analyzes for screening sPTB < 35 weeks. AI model was created based on the stacking-based ensemble learning method (SBELM) by the neural network, gathering CL < 25 mm, multivariate unadjusted logistic regression (LR), and the best AI algorithm. Receiver Operating Characteristics (ROC) curve to predict sPTB < 35 weeks and area under the curve (AUC), sensitivity, specificity, accuracy, predictive positive and negative values were performed to evaluate CL < 25 mm, LR, the best algorithms of AI and SBELM.

RESULTS

The most relevant variables presented by LR were cervical funneling, index straight CL/internal angle inside the cervix (≤ 0.200), previous PTB < 37 weeks, previous curettage, no antibiotic treatment during pregnancy, and weight (≤ 58 kg), no smoking, and CL < 30.9 mm. Fixing 10% of false positive rate, CL < 25 mm and SBELM present, respectively: AUC of 0.318 and 0.808; sensitivity of 33.3% and 47,3%; specificity of 91.8 and 92.8%; positive predictive value of 23.1 and 32.7%; negative predictive value of 94.9 and 96.0%. This machine learning presented high statistical significance when compared to CL < 25 mm after T-test ( < .00001).

CONCLUSION

AI applied to clinical and ultrasonographic variables could be a viable option for screening of sPTB < 35 weeks, improving the performance of short cervix, with a low false-positive rate.

摘要

目的

本研究旨在基于人工智能(AI)创建一种新的自发性早产(sPTB)筛查方法。

方法

本研究纳入了 524 例经阴道超声宫颈长度(CL)分析在 18 至 24 孕周的单胎妊娠,用于筛查<35 周的 sPTB。AI 模型是基于神经网络的堆叠式集成学习方法(SBELM)创建的,纳入 CL<25mm、多变量未校正逻辑回归(LR)和最佳 AI 算法。通过接受者操作特征(ROC)曲线预测<35 周的 sPTB,并计算曲线下面积(AUC)、敏感度、特异度、准确度、阳性预测值和阴性预测值,以评估 CL<25mm、LR、最佳 AI 算法和 SBELM。

结果

LR 呈现的最相关变量为宫颈漏斗形成、指数直 CL/宫颈内口内角(≤0.200)、<37 周的既往早产、既往刮宫术、孕期无抗生素治疗、体重(≤58kg)、不吸烟和 CL<30.9mm。固定 10%的假阳性率,CL<25mm 和 SBELM 分别为:AUC 为 0.318 和 0.808;敏感度为 33.3%和 47.3%;特异度为 91.8%和 92.8%;阳性预测值为 23.1%和 32.7%;阴性预测值为 94.9%和 96.0%。与 T 检验(<0.00001)后 CL<25mm 相比,该机器学习具有统计学意义。

结论

将 AI 应用于临床和超声变量可能是筛查<35 周 sPTB 的一种可行选择,可提高短颈的性能,且假阳性率低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验