Suppr超能文献

当前肺泡呼吸气体交换分析中呼吸周期的定义。

Current definitions of the breathing cycle in alveolar breath-by-breath gas exchange analysis.

机构信息

The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States.

School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, United Kingdom.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2023 Nov 1;325(5):R433-R445. doi: 10.1152/ajpregu.00065.2023. Epub 2023 Jul 31.

Abstract

Identification of the breathing cycle forms the basis of any breath-by-breath gas exchange analysis. Classically, the breathing cycle is defined as the time interval between the beginning of two consecutive inspiration phases. Based on this definition, several research groups have developed algorithms designed to estimate the volume and rate of gas transferred across the alveolar membrane ("alveolar gas exchange"); however, most algorithms require measurement of lung volume at the beginning of the breath (; i.e., the end-expiratory lung volume of the preceding breath). The main limitation of these algorithms is that direct measurement of is challenging and often unavailable. Two solutions avoid the requirement to measure by redefining the breathing cycle. One method defines the breathing cycle as the time between two equal fractional concentrations of lung expired oxygen () (or carbon dioxide; ), typically in the alveolar phase, whereas the other uses the time between equal values of the / (or /) ratios [i.e., the ratio of fractional concentrations of lung expired O (or CO) and nitrogen (N)]. Thus, these methods identify the breathing cycle by analyzing the gas fraction traces rather than the gas flow signal. In this review, we define the traditional approach and two alternative definitions of the human breathing cycle and present the rationale for redefining this term. We also explore the strengths and limitations of the available approaches and provide implications for future studies.

摘要

呼吸循环的识别是任何逐口气分析的基础。经典地,呼吸循环定义为两个连续吸气相之间的时间间隔。基于这个定义,几个研究小组已经开发了旨在估计跨肺泡膜转移的气体体积和速率的算法(“肺泡气体交换”);然而,大多数算法需要在呼吸开始时测量肺容量(即前一个呼吸的呼气末肺容量)。这些算法的主要限制是直接测量 具有挑战性且通常不可用。两种解决方案通过重新定义呼吸循环来避免测量 的要求。一种方法将呼吸循环定义为两个相等的肺呼气氧()分数浓度(或二氧化碳;)之间的时间,通常在肺泡相中,而另一种方法则使用 /(或 /)比值(即肺呼气 O(或 CO)和氮(N)的分数浓度之比)相等值之间的时间。因此,这些方法通过分析气体分数迹线而不是气体流量信号来识别呼吸循环。在这篇综述中,我们定义了人类呼吸循环的传统方法和两种替代定义,并提出了重新定义该术语的原理。我们还探讨了现有方法的优缺点,并为未来的研究提供了启示。

相似文献

1
Current definitions of the breathing cycle in alveolar breath-by-breath gas exchange analysis.
Am J Physiol Regul Integr Comp Physiol. 2023 Nov 1;325(5):R433-R445. doi: 10.1152/ajpregu.00065.2023. Epub 2023 Jul 31.
2
New perspectives in breath-by-breath determination of alveolar gas exchange in humans.
Pflugers Arch. 2001 Jan;441(4):566-77. doi: 10.1007/s004240000429.
3
Calculation algorithms alter the breath-by-breath gas exchange values when abrupt changes in ventilation occur.
Clin Physiol Funct Imaging. 2018 May;38(3):491-496. doi: 10.1111/cpf.12444. Epub 2017 Jun 2.
4
New acquisitions in the assessment of breath-by-breath alveolar gas transfer in humans.
Eur J Appl Physiol. 2003 Oct;90(3-4):231-41. doi: 10.1007/s00421-003-0951-y. Epub 2003 Sep 27.
5
Breath-by-breath measurement of true alveolar gas exchange.
J Appl Physiol Respir Environ Exerc Physiol. 1981 Dec;51(6):1662-75. doi: 10.1152/jappl.1981.51.6.1662.
6
Evaluation of estimates of alveolar gas exchange by using a tidally ventilated nonhomogenous lung model.
J Appl Physiol (1985). 1997 Jun;82(6):1963-71. doi: 10.1152/jappl.1997.82.6.1963.
7
Breath-by-breath estimate of alveolar gas transfer variability in man at rest and during exercise.
J Physiol. 1989 Aug;415:459-75. doi: 10.1113/jphysiol.1989.sp017731.
8
Assessment of breath-by-breath alveolar gas exchange: an alternative view of the respiratory cycle.
Eur J Appl Physiol. 2015 Sep;115(9):1897-904. doi: 10.1007/s00421-015-3169-x. Epub 2015 Apr 19.
10
Calculation algorithms for breath-by-breath alveolar gas exchange: the unknowns!
Eur J Appl Physiol. 2018 Sep;118(9):1869-1876. doi: 10.1007/s00421-018-3914-z. Epub 2018 Jun 25.

引用本文的文献

1
Time courses for pulmonary oxygen uptake and cardiovascular responses are similar during apnea in resting humans.
Front Physiol. 2025 Mar 13;16:1524237. doi: 10.3389/fphys.2025.1524237. eCollection 2025.
3
Move less, spend more: the metabolic demands of short walking bouts.
Proc Biol Sci. 2024 Oct;291(2033):20241220. doi: 10.1098/rspb.2024.1220. Epub 2024 Oct 16.
4
A novel method for determining ventilatory and gas exchange dynamics during exercise: the "chirp" waveform.
J Appl Physiol (1985). 2024 Nov 1;137(5):1130-1144. doi: 10.1152/japplphysiol.00358.2024. Epub 2024 Aug 29.
5
Measuring pulmonary oxygen uptake kinetics: Contemporary perspectives.
Exp Physiol. 2024 Mar;109(3):322-323. doi: 10.1113/EP091657. Epub 2023 Dec 29.

本文引用的文献

1
Breathing patterns recognition: A functional data analysis approach.
Comput Methods Programs Biomed. 2022 Apr;217:106670. doi: 10.1016/j.cmpb.2022.106670. Epub 2022 Feb 3.
2
Ventilation/carbon dioxide output relationships during exercise in health.
Eur Respir Rev. 2021 Apr 13;30(160). doi: 10.1183/16000617.0160-2020. Print 2021 Jun 30.
4
Cardiopulmonary Exercise Testing in the Assessment of Dysfunctional Breathing.
Front Physiol. 2021 Jan 27;11:620955. doi: 10.3389/fphys.2020.620955. eCollection 2020.
5
The effect of pedalling cadence on respiratory frequency: passive vs. active exercise of different intensities.
Eur J Appl Physiol. 2021 Feb;121(2):583-596. doi: 10.1007/s00421-020-04533-z. Epub 2020 Nov 9.
6
Breath-by-breath oxygen uptake during running: Effects of different calculation algorithms.
Exp Physiol. 2019 Dec;104(12):1829-1840. doi: 10.1113/EP087916. Epub 2019 Oct 25.
7
Comparison of different breath-by-breath gas exchange algorithms using a gas exchange simulation system.
Respir Physiol Neurobiol. 2019 Aug;266:171-178. doi: 10.1016/j.resp.2019.04.009. Epub 2019 Apr 19.
8
The "independent breath" algorithm: assessment of oxygen uptake during exercise.
Eur J Appl Physiol. 2019 Feb;119(2):495-508. doi: 10.1007/s00421-018-4046-1. Epub 2018 Dec 4.
9
Defining the Rhythmogenic Elements of Mammalian Breathing.
Physiology (Bethesda). 2018 Sep 1;33(5):302-316. doi: 10.1152/physiol.00025.2018.
10
Exercise ventilatory irregularity can be quantified by approximate entropy to detect breathing pattern disorder.
Respir Physiol Neurobiol. 2018 Sep;255:1-6. doi: 10.1016/j.resp.2018.05.002. Epub 2018 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验