Wittmar Alexandra S M, Vigneswaran Thaarmikaa, Ranković Nikola, Hagemann Ulrich, Hartmann Nils, Martínez-Hincapié Ricardo, Čolić Viktor, Ulbricht Mathias
Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen Universitätsstr. 745141 Essen Germany.
NETZ - NanoEnergieTechnikZentrum, CENIDE - Center for Nanointegration Duisburg-Essen Carl-Benz-Str. 199 47057 Duisburg Germany
RSC Adv. 2023 Jul 27;13(33):22777-22788. doi: 10.1039/d3ra02587j. eCollection 2023 Jul 26.
Nitrogen-containing porous carbons prepared by the pyrolysis of adequate biopolymer-based precursors have shown potential in several electrochemical energy-related applications. However, it is still of crucial interest to find the optimal precursors and process conditions which would allow the preparation of carbons with adequate porous structure as well as suitable nitrogen content and distribution of functional groups. In the present work we suggested a straightforward approach to prepare N-doped porous carbons by direct pyrolysis under nitrogen of chitosan : coffee blends of different compositions and using KOH for simultaneous surface activation. The synthetized carbon materials were tested for the electrochemical oxygen reduction to hydrogen peroxide (HO). A higher fraction of chitosan in the precursor led to a decrease in meso- and nano-porosity of the formed porous carbons, while their activity towards HO generation increased. The nitrogen species derived from chitosan seem to play a very important role. Out of the synthesized catalysts the one with the largest content of pyridinic nitrogen sites exhibited the highest faradaic efficiency. The faradaic efficiencies and current densities of the synthesized materials were comparable with the ones of other commercially available carbons obtained from less renewable precursors.
通过热解适当的生物聚合物基前驱体制备的含氮多孔碳在几种与电化学能源相关的应用中显示出潜力。然而,找到最佳的前驱体和工艺条件仍然至关重要,这些条件能够制备出具有适当多孔结构以及合适的氮含量和官能团分布的碳材料。在本工作中,我们提出了一种直接的方法,即在氮气气氛下对不同组成的壳聚糖:咖啡混合物进行直接热解,并使用KOH进行同步表面活化,以制备氮掺杂多孔碳。对合成的碳材料进行了电化学氧还原为过氧化氢(HO)的测试。前驱体中壳聚糖比例的增加导致所形成的多孔碳的中孔和纳米孔率降低,而它们对HO生成的活性增加。源自壳聚糖的氮物种似乎起着非常重要的作用。在合成的催化剂中,具有最大吡啶氮位点含量的催化剂表现出最高的法拉第效率。合成材料的法拉第效率和电流密度与从可再生性较差的前驱体制备的其他市售碳材料相当。