Suppr超能文献

从原始支架和短链序列列表中逆向工程DNA折纸纳米结构设计。

Reverse engineering DNA origami nanostructure designs from raw scaffold and staple sequence lists.

作者信息

Shirt-Ediss Ben, Connolly Jordan, Elezgaray Juan, Torelli Emanuela, Navarro Silvia Adriana, Bacardit Jaume, Krasnogor Natalio

机构信息

Interdisciplinary Computing and Complex Biosystems Research Group, School of Computing, Newcastle University, Newcastle-upon-Tyne NE4 5TG, UK.

Centre de Recherche Paul Pascal, CNRS, UMR503, Pessac 33600, France.

出版信息

Comput Struct Biotechnol J. 2023 Jul 16;21:3615-3626. doi: 10.1016/j.csbj.2023.07.011. eCollection 2023.

Abstract

Designs for scaffolded DNA origami nanostructures are commonly and minimally published as the list of DNA staple and scaffold sequences required. In nearly all cases, high-level editable design files (e.g. caDNAno) which generated the low-level sequences are not made available. This de facto 'raw sequence' exchange format allows published origami designs to be re-attempted in the laboratory by other groups, but effectively stops designs from being significantly modified or re-purposed for new future applications. To make the raw sequence exchange format more accessible to further design and engineering, in this work we propose the first algorithmic solution to the inverse problem of converting staple/scaffold sequences back to a 'guide schematic' resembling the original origami schematic. The guide schematic can be used to aid the manual re-input of an origami into a CAD tool like caDNAno, hence recovering a high-level editable design file. Creation of a guide schematic can also be used to double check that a list of staple strand sequences does not have errors and indeed does assemble into a desired origami nanostructure prior to costly laboratory experimentation. We tested our reverse algorithm on 36 diverse origami designs from the literature and found that 29 origamis (81 %) had a good quality guide schematic recovered from raw sequences. Our software is made available at https://revnano.readthedocs.io.

摘要

支架式DNA折纸纳米结构的设计通常以所需DNA短链和支架序列列表的形式最少地公开。几乎在所有情况下,生成这些低层次序列的高级可编辑设计文件(如caDNAno)都不会公开。这种事实上的“原始序列”交换格式使其他团队能够在实验室中重新尝试已发表的折纸设计,但实际上阻止了设计被显著修改或重新用于新的未来应用。为了使原始序列交换格式更便于进一步的设计和工程应用,在这项工作中,我们提出了第一个算法解决方案,用于解决将短链/支架序列转换回类似于原始折纸示意图的“引导示意图”的逆问题。该引导示意图可用于辅助将折纸手动重新输入到如caDNAno这样的CAD工具中,从而恢复高级可编辑设计文件。创建引导示意图还可用于在进行昂贵的实验室实验之前,再次检查短链序列列表是否没有错误,并且确实能组装成所需的折纸纳米结构。我们在文献中选取的36种不同的折纸设计上测试了我们的反向算法,发现29种折纸(81%)能从原始序列中恢复出高质量的引导示意图。我们的软件可在https://revnano.readthedocs.io获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a175/10371787/715c45e6116f/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验