Zhu Yi, Ren Pengwei, Doi Suhail A R, Furuya-Kanamori Luis, Lin Lifeng, Zhou Xiaoqin, Tao Fangbiao, Xu Chang
MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui, China.
Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Anhui, China.
Contemp Clin Trials Commun. 2023 Jul 20;35:101189. doi: 10.1016/j.conctc.2023.101189. eCollection 2023 Oct.
Data extraction is the foundation for research synthesis evidence, while data extraction errors frequently occur in the literature. An interesting phenomenon was observed that data extraction error tend to be more common in trials of pharmaceutical interventions compared to non-pharmaceutical ones. The elucidation of which would have implications for guidelines, practice, and policy.
We propose a crossover, multicenter, investigator-blinded trial to elucidate the potential variants on the data extraction error rates. Eligible 90 participants would be 2nd year or above post-graduate students (e.g., masters, doctoral program). Participants will be randomized to one of the two groups to complete pre-defined data extraction tasks: 1) group A will contain 10 randomized controlled trials (RCTs) of pharmaceutical interventions; 2) group B will contain 10 RCTs of non-pharmaceutical interventions. Participants who finish the data extraction would then be assigned to the alternative group for another round of data extraction after a 30 min washout period. Finally, those participants assigned to A or B group will be further 1:1 randomly matched based on a random-sequenced number for the double-checking process on the extracted data. The primary outcome will be the data extract error rates of the pharmaceutical intervention group and non-pharmaceutical group, the double-checking process, in terms of the cell level, study level, and participant level. The secondary outcome will be the data error rates of the pharmaceutical intervention group and non-pharmaceutical group the double-checking process, again, in terms of the cell level, study level, and participant level. A generalized linear mixed effects model (based on the above three levels) will be used to estimate the potential differences in the error rates, with a log link function for binomial data. Subgroup analyses will account for the experience of individuals on systematic reviews and the time used for the data extraction.
This trial will provide useful evidence for further systematic review of data extraction practices, improved data extraction strategies, and better guidelines.
Chinese Clinical Trial Register Center (Identifier: ChiCTR2200062206).
数据提取是研究综合证据的基础,但文献中经常出现数据提取错误。观察到一个有趣的现象,与非药物干预试验相比,数据提取错误在药物干预试验中往往更为常见。对此进行阐释将对指南、实践和政策产生影响。
我们提出一项交叉、多中心、研究者设盲的试验,以阐明数据提取错误率的潜在差异。符合条件的90名参与者将是二年级及以上的研究生(如硕士、博士项目)。参与者将被随机分为两组之一,以完成预定义的数据提取任务:1)A组将包含10项药物干预的随机对照试验(RCT);2)B组将包含10项非药物干预的RCT。完成数据提取的参与者在30分钟的洗脱期后将被分配到另一组进行另一轮数据提取。最后,根据随机序列数将分配到A组或B组的参与者进一步1:1随机匹配,以对提取的数据进行双重检查。主要结局将是药物干预组和非药物组在细胞水平、研究水平和参与者水平上的数据提取错误率以及双重检查过程。次要结局将同样是药物干预组和非药物组在细胞水平、研究水平和参与者水平上的数据错误率以及双重检查过程。将使用广义线性混合效应模型(基于上述三个水平)来估计错误率的潜在差异,对二项数据使用对数链接函数。亚组分析将考虑个体在系统评价方面的经验以及数据提取所用的时间。
该试验将为进一步系统评价数据提取实践、改进数据提取策略和制定更好的指南提供有用的证据。
中国临床试验注册中心(标识符:ChiCTR2200062206)。