Suppr超能文献

通过全基因组测序转变食品安全实践中对产志贺毒素菌株的监测。

Transforming Shiga toxin-producing surveillance through whole genome sequencing in food safety practices.

作者信息

Nouws Stéphanie, Verhaegen Bavo, Denayer Sarah, Crombé Florence, Piérard Denis, Bogaerts Bert, Vanneste Kevin, Marchal Kathleen, Roosens Nancy H C, De Keersmaecker Sigrid C J

机构信息

Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium.

IDlab, Department of Information Technology, Ghent University-IMEC, Ghent, Belgium.

出版信息

Front Microbiol. 2023 Jul 13;14:1204630. doi: 10.3389/fmicb.2023.1204630. eCollection 2023.

Abstract

INTRODUCTION

Shiga toxin-producing (STEC) is a gastrointestinal pathogen causing foodborne outbreaks. Whole Genome Sequencing (WGS) in STEC surveillance holds promise in outbreak prevention and confinement, in broadening STEC epidemiology and in contributing to risk assessment and source attribution. However, despite international recommendations, WGS is often restricted to assist outbreak investigation and is not yet fully implemented in food safety surveillance across all European countries, in contrast to for example in the United States.

METHODS

In this study, WGS was retrospectively applied to isolates collected within the context of Belgian food safety surveillance and combined with data from clinical isolates to evaluate its benefits. A cross-sector WGS-based collection of 754 strains from 1998 to 2020 was analyzed.

RESULTS

We confirmed that WGS in food safety surveillance allows accurate detection of genomic relationships between human cases and strains isolated from food samples, including those dispersed over time and geographical locations. Identifying these links can reveal new insights into outbreaks and direct epidemiological investigations to facilitate outbreak management. Complete WGS-based isolate characterization enabled expanding epidemiological insights related to circulating serotypes, virulence genes and antimicrobial resistance across different reservoirs. Moreover, associations between virulence genes and severe disease were determined by incorporating human metadata into the data analysis. Gaps in the surveillance system were identified and suggestions for optimization related to sample centralization, harmonizing isolation methods, and expanding sampling strategies were formulated.

DISCUSSION

This study contributes to developing a representative WGS-based collection of circulating STEC strains and by illustrating its benefits, it aims to incite policymakers to support WGS uptake in food safety surveillance.

摘要

引言

产志贺毒素大肠杆菌(STEC)是一种引起食源性疾病暴发的胃肠道病原体。在STEC监测中,全基因组测序(WGS)在预防和控制疫情、拓展STEC流行病学以及促进风险评估和源头追溯方面具有前景。然而,尽管有国际建议,但与美国等国家相比,WGS在欧洲各国通常仅被用于协助疫情调查,尚未在所有国家的食品安全监测中全面实施。

方法

在本研究中,WGS被回顾性应用于比利时食品安全监测背景下收集的分离株,并与临床分离株的数据相结合,以评估其益处。分析了1998年至2020年期间基于WGS的754株跨部门菌株集合。

结果

我们证实,食品安全监测中的WGS能够准确检测人类病例与从食品样本中分离出的菌株之间的基因组关系,包括那些在时间和地理位置上分散的菌株。识别这些联系可以揭示疫情的新见解,并指导流行病学调查以促进疫情管理。基于WGS的完整菌株特征分析能够拓展与不同宿主中流行血清型、毒力基因和抗菌药物耐药性相关的流行病学见解。此外,通过将人类元数据纳入数据分析,确定了毒力基因与严重疾病之间的关联。识别了监测系统中的差距,并制定了与样本集中化、统一分离方法和扩大采样策略相关的优化建议。

讨论

本研究有助于建立一个具有代表性的基于WGS的流行STEC菌株集合,并通过说明其益处,旨在促使政策制定者支持在食品安全监测中采用WGS。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2eb/10381951/9c97bc3e8c28/fmicb-14-1204630-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验